Chromatic uniqueness of elements of height a parts per thousand currency sign 3 in lattices of complete multipartite graphs / Baranskii V. A.,Sen'chonok T. A. // PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS. - 2012. - V. 279, l. 1. - P. S1-S16.

ISSN/EISSN:
0081-5438 / нет данных
Type:
Article
Abstract:
For integers n and t such that 0 < t < n and a nonnegative integer h a parts per thousand currency sign 3, it is proved that any complete t-partite n-graph with nontrivial parts and height h in the lattice NPL(n, t) of partitions of the positive integer n into t additive terms is chromatically unique.
Author keywords:
integer partition; lattice; graph; complete multipartite graph; chromatic polynomial; chromatic uniqueness
DOI:
10.1134/S0081543812090015
Web of Science ID:
ISI:000312634700001
Соавторы в МНС:
Другие поля
Поле Значение
Month DEC
Publisher MAIK NAUKA/INTERPERIODICA/SPRINGER
Address 233 SPRING ST, NEW YORK, NY 10013-1578 USA
Language English
Research-Areas Mathematics
Web-of-Science-Categories Mathematics, Applied; Mathematics
Author-Email Vitali.Baranski@usu.ru Tatiana.Senchonok@usu.ru
Number-of-Cited-References 16
Usage-Count-Last-180-days 2
Usage-Count-Since-2013 13
Journal-ISO Proc. Steklov Inst. Math.
Doc-Delivery-Number 058LG