Asymptotics of Regularized Solutions of an Ill-Posed Cauchy Problem for an Autonomous Linear System of Differential Equations with Commensurable Delays / Dolgii Yu F.,Surkov P. G. // PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS. - 2014. - V. 287, l. 1. - P. S55-S67.

ISSN/EISSN:
0081-5438 / 1531-8605
Type:
Article
Abstract:
For an autonomous linear system of differential equations with commensurable delays, asymptotic formulas are found that describe the analytic dependences of regularized solutions of the system on the regularization parameter. The problem is solved under the requirement that the initial function is sufficiently smooth but with the violation of the conditions that guarantee the continuous extension of solutions in the direction of decreasing time.
Author keywords:
differential equations with delay; ill-posed problem; asymptotic methods
DOI:
10.1134/S0081543814090065
Web of Science ID:
ISI:000345589100006
Соавторы в МНС:
Другие поля
Поле Значение
Month DEC
Publisher MAIK NAUKA/INTERPERIODICA/SPRINGER
Address 233 SPRING ST, NEW YORK, NY 10013-1578 USA
Language English
EISSN 1531-8605
Research-Areas Mathematics
Web-of-Science-Categories Mathematics, Applied; Mathematics
Author-Email Yurii.Dolgii@usu.ru platon.surkov@gmail.com
Funding-Acknowledgement Ural-Siberian Interdisciplinary Project; Russian Foundation for Basic Research {[}13-01-00094]; Ural Branch of the Russian Academy of Sciences {[}M-UrO-2013-2]; Program for State Support of Leading Universities of the Russian Federation {[}02.A03.21.0006]
Funding-Text This work was supported by the Ural-Siberian Interdisciplinary Project, by the Russian Foundation for Basic Research (project no. 13-01-00094), by the Ural Branch of the Russian Academy of Sciences (project no. M-UrO-2013-2), and by the Program for State Support of Leading Universities of the Russian Federation (agreement no. 02.A03.21.0006 of August 27, 2013).
Number-of-Cited-References 14
Usage-Count-Since-2013 2
Journal-ISO Proc. Steklov Inst. Math.
Doc-Delivery-Number AU4NT