Asymptotic representation of a solution to a singular perturbation linear time-optimal problem / Danilin A. R.,Kovrizhnykh O. O. // PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS. - 2013. - V. 281, l. 1. - P. S22-S35.

ISSN/EISSN:
0081-5438 / нет данных
Type:
Article
Abstract:
A time-optimal control problem is considered for a linear system with fast and slow variables and smooth geometric constraints on the control. An asymptotic expansion of the optimal time up to the second order of smallness is constructed and validated.
Author keywords:
optimal control; time-optimal control problem; asymptotic expansion; singular perturbation problems; small parameter
DOI:
10.1134/S0081543813050039
Web of Science ID:
ISI:000320460300003
Соавторы в МНС:
Другие поля
Поле Значение
Month JUN
Publisher MAIK NAUKA/INTERPERIODICA/SPRINGER
Address 233 SPRING ST, NEW YORK, NY 10013-1578 USA
Language English
Research-Areas Mathematics
Web-of-Science-Categories Mathematics, Applied; Mathematics
Author-Email dar@imm.uran.ru koo@imm.uran.ru
ORCID-Numbers Danilin, Aleksei Rufimovich/0000-0002-8711-2026
Funding-Acknowledgement Russian Foundation for Basic Research {[}11-01-00679-a]; Federal Target Program {[}02.740.11.0612]; Program of the Presidium of the Russian Academy of Sciences ``Fundamental Problems of Nonlinear Dynamics in Mathematics and Physics{''} {[}12-P-1-1009]
Funding-Text This work was supported by the Russian Foundation for Basic Research (project no. 11-01-00679-a), by the Federal Target Program (contract no. 02.740.11.0612), and by the Program of the Presidium of the Russian Academy of Sciences ``Fundamental Problems of Nonlinear Dynamics in Mathematics and Physics{''} (project no. 12-P-1-1009).
Number-of-Cited-References 18
Usage-Count-Since-2013 2
Journal-ISO Proc. Steklov Inst. Math.
Doc-Delivery-Number 165CK