Wavelets in spaces of harmonic functions / Subbotin YN,Chernykh NI // IZVESTIYA MATHEMATICS. - 2000. - V. 64, l. 1. - P. 143-171.

ISSN/EISSN:
1064-5632 / нет данных
Type:
Article
Abstract:
Using Meyer's bases of wavelets {[}1], we construct orthogonal bases of wavelets in the spaces h(p) (1 less than or equal to p less than or equal to infinity) of functions harmonic in the unit disc \textbackslash{}z\textbackslash{} < 1 or in the annulus 0 < p < \textbackslash{}z\textbackslash{} < 1. The partial sums of the Fourier series with respect to these bases possess approximating properties comparable with the best approximations by trigonometric polynomials.
Author keywords:
нет данных
DOI:
10.1070/IM2000v064n01ABEH00027
Web of Science ID:
ISI:000087745000005
Соавторы в МНС:
Другие поля
Поле Значение
Month JAN-FEB
Publisher LONDON MATHEMATICAL SOCIETY RUSSIAN ACAD SCIENCES
Address C/O TURPION LTD, TURPIN DISTRIBUTION SERVICES, BLACKHORSE RD,, LETCHWORTH, HERTS, ENGLAND SG6 1HN
Language English
Research-Areas Mathematics
Web-of-Science-Categories Mathematics
ResearcherID-Numbers Subbotin, Yurii Nikolaevich/C-4273-2017
Number-of-Cited-References 10
Journal-ISO Izv. Math.
Doc-Delivery-Number 326PY