Broadband mode in proton-precession magnetometers with signal processing regression methods / Denisov A.Y., Sapunov V.A., Rubinstein B. // Measurement Science and Technology. - 2014. - V. 25, l. 5.

ISSN:
09570233
Type:
Article
Abstract:
The choice of the signal processing method may improve characteristics of the measuring device. We consider the measurement error of signal processing regression methods for a quasi-harmonic signal generated in a frequency selective device. The results are applied to analyze the difference between the simple period meter processing and regression algorithms using measurement cycle signal data in proton-precession magnetometers. Dependences of the measurement error on the sensor quality factor and frequency of nuclear precession are obtained. It is shown that regression methods considerably widen the registration bandwidth and relax the requirements on the magnetometer hardware, and thus affect the optimization criteria of the registration system. © 2014 IOP Publishing Ltd.
Author keywords:
magnetic resonance; magnetometer; regression algorithm; signal processing; zero-crossing problems
Index keywords:
Algorithms; Magnetic resonance; Magnetometers; Measurement errors; Protons; Regression analysis; Signal processing; Frequency-selective devices; Measuring device; Optimization criteria; Quality factor
DOI:
10.1088/0957-0233/25/5/055103
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898627376&doi=10.1088%2f0957-0233%2f25%2f5%2f055103&partnerID=40&md5=9f5244ab1c77c03ba582af51a17ab093
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 055103
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898627376&doi=10.1088%2f0957-0233%2f25%2f5%2f055103&partnerID=40&md5=9f5244ab1c77c03ba582af51a17ab093
Affiliations Quantum Magnetometry Laboratory, Ural Federal University after First President of Russia B N Yeltsin, Mira St., 19, Yekaterinburg 620002, Russian Federation; Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, United States
Author Keywords magnetic resonance; magnetometer; regression algorithm; signal processing; zero-crossing problems
References Primdahl, F., Scalar magnetometers for space applications (1998) Measurement Techniques in Space Plasmas, pp. 85-99. , 10.1029/GM103; Ripka, P., (2001) Magnetic Sensors and Magnetometers; Kernevez, F., Glenat, H., Description of a high-sensitivity CW scalar DNP-NMR magnetometer (1991) IEEE Trans. Magn., 27, pp. 5402-5404. , 10.1109/20.278852 0018-9464; Denisov, A.Y., Sapunov, V.A., Dikusar, O.V., Calculation of the measurement error of a digital-processor nuclear-precession magnetometer (1999) Geomagn. Aeron., 39, pp. 68-73. , 0016-7940; Denisov, A.Y., Sapunov, V.A., Dikusar, O.V., (1999) Geomagn. Aeron., 39, p. 737. , 0016-7940; Sapunov, V.A., Denisov, A.Y., Denisova, O.V., Saveliev, D.V., Proton and Overhauser magnetometers metrology (2001) Contrib. Geophys. Geod., 31, pp. 119-124. , 1335-2806; Mohr, P.J., Taylor, B.N., Newell, D.B., CODATA recommended values of the fundamental physical constants: 2010 (2012) Rev. Mod. Phys., 84, pp. 1527-1579. , 10.1103/RevModPhys.84.1527 0034-6861; Mischie, S., Toma, L., Extending the frequency measurement of a single sinusoid above the Nyquist limit based on zero crossings method (2006) Facta Univ. Ser.: Electron. Energ., 19, pp. 1-11. , 10.2298/FUEE0601001M; Farrell, E.J., Grosch, C.B., Determination of period from times of zeros (1965) Proc. IEEE, 53, pp. 2162-2163. , 10.1109/PROC.1965.4545 0018-9219; Hancke Gerhard, P., The optimal frequency estimation of a noisy sinusoidal signal (1990) IEEE Transactions on Instrumentation and Measurement, 39 (6), pp. 843-846. , DOI 10.1109/19.65780; Chibane, Y., Lamoreaux, S.K., Pendlebury, J.M., Smith, K.F., Minimum variance of frequency estimations for a sinusoidal signal with low noise (1995) Meas. Sci. Technol., 6 (12), pp. 1671-1678. , 10.1088/0957-0233/6/12/004 0957-0233 004; Nyquist, H., Thermal agitation of electric charges in conductors (1928) Phys. Rev., 32, pp. 110-117. , 10.1103/PhysRev.32.110; Trittler, S., Estimating the frequency of a noisy sinusoid by linear regression (1985) IEEE Trans. Inform. Theory, 31, pp. 832-835. , 10.1109/TIT.1985.1057115 0018-9448; Trittler, S., Hamprecht, F.A., Near optimum sampling design and an efficient algorithm for single tone frequency estimation J. Digit. Signal Process., 19, pp. 628-639. , 10.1016/j.dsp.2008.10.003; Park, S.Y., Song, Y.S., Kim, H.J., Park, J., Improved method for frequency estimation of sampled sinusoidal signals without iteration (2011) IEEE Trans. Instrum. Meas., 60, pp. 2828-2834. , 10.1109/TIM.2011.2121231 0018-9456; Korolev, I.A., Alekseenko, N.N., Porodnov, B.T., Sapunov, V.A., Savel'ev, D.V., A digital deformation vacuum gauge with an LC-generator (2003) Measurement Techniques, 46 (9), pp. 865-871. , DOI 10.1023/B:METE.0000008446.69192.1d; Sheng, D., Li, S., Dural, N., Romalis, M.V., Subfemtotesla scalar atomic magnetometry using multipass cells (2013) Phys. Rev. Lett., 110. , 10.1103/PhysRevLett.110.160802 160802
Publisher Institute of Physics Publishing
CODEN MSTCE
Language of Original Document English
Abbreviated Source Title Meas. Sci. Technol.
Source Scopus