Comparative analysis of the thermosize effects of transition-metal clusters that are free or deposited onto graphene. Molecular dynamics simulation / Polukhin V.A., Gafner Y.Y., Chepkasov I.V., Kurbanova E.D. // Russian Metallurgy (Metally). - 2014. - V. 2014, l. 2. - P. 112-125.

ISSN:
00360295
Type:
Article
Abstract:
Molecular dynamics is used to simulate a computer analog of the condensation and thermally activated relaxation of transition - metal (Ni, Pd, Cu) nanoclusters 561–2869 atoms in size followed by the fixation of their regular surfaces onto a graphene substrate during superposition. Specific two dimensional configurations (ring clusters) are revealed in the transition metal/graphene contact zone as a result of thermally activated recoordination. © Pleiades Publishing, Ltd., 2014.
Author keywords:
Index keywords:
Graphene; Palladium; Transition metals; Comparative analysis; Graphene substrates; Molecular dynamics simulations; Recoordination; Regular surfaces; Ring clusters; Thermally activated; Transition-meta
DOI:
10.1134/S0036029514020128
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922377328&doi=10.1134%2fS0036029514020128&partnerID=40&md5=fa71d2c585abfdcd68039bc5a5318b34
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922377328&doi=10.1134%2fS0036029514020128&partnerID=40&md5=fa71d2c585abfdcd68039bc5a5318b34
Affiliations Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation; Institute of Material Studies and Metallurgy, Ural Federal University, Yekaterinburg, Russian Federation; Khakassia State University, Abakan, Russian Federation
References Mansuri, G.A., (2008) Principles of Nanotechnology, , Nauchnyi Mir, Moscow; Budarin, A.G., General mechanism of Mf noise generation (2000) Dokl. Akad. Nauk, 372 (2), pp. 326-329; Rotello, V., (2003) Nanoparticles: Building Blocks for Nanotechnology (Nanostructure Science and Technology), , Springer; Polukhin, V.A., (2004) Simulation of Nanostructure and Precursor States, , UrO RAN, Yekaterinburg; Shevchenko, V.J., Mackay, A.L., Geometrical principles for the selfassembling of nanoparticles (2008) Glass Phys. Chem., 34 (1), pp. 3-10; Doye, J., Physical perspectives on the global optimization of atomic clusters (2006) Global Optimization. Nonconvex Optimization and Its Applications, 85, pp. 103-139; Cleri, F., Rosato, V., Tight[1]binding potentials for transition metals and alloys (1993) Phys. Rev. B, 48 (1), pp. 22-33; Backman, U., Jokiniemi, J.K., Auvinen, A., Lehtinen, K.E., The effect of boundary conditions on gas phase synthesized silver nanoparticles (2002) J. Nanoparticle Research, 4 (4), pp. 325-332; Andersen, H.C., Molecular dynamics simulations at constant pressure and/or temperature (1980) J. Phys. Chem., 72, pp. 2384-2389; Gafner, S.L., Gafner, Y.Y., Analysis of the condensation of Ni nanoparticles from a gas phase (2008) J. Exp. Teor. Fiz., 134 (10), pp. 831-844; Polukhin, V.A., Vatolin, N.A., (1985) Simulation of Amorphous Metals, , Nauka, Moscow; Gafner, Y.Y., Goloven’Ko, Z.V., Gafner, S.L., Formation of the structure of gold nanoclusters during solidification (2013) Zhetf, 143 (2), pp. 288-305; Vorontsov, A.G., Gel’Chinskii, B.R., Korenchenko, A.E., Kinetics and energy states of nanoclusters at the initial stage of homogeneous condensation at high degrees of supersaturation (2012) Zhetf, 142 (10), pp. 1-11; Vstovskii, G.V., Kolmakov, A.G., Bunin, I.Z., (2001) Introduction to the Multifractal Parameterization of Material Structure, , Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk; Smirnov, B.M., (1991) Physics of Fractal Clusters, , Nauka, Moscow; Barakhtin, B.K., Chashnikov, V.F., Computer program for multifractal analysis of the images of metal and alloy structures (2001) Vopr. Materialoved., 28 (4), pp. 10-13; Gafner, S.L., Redel’, L.V., Goloven’Ko, Z.V., Structural transitions in small nickel clusters (2009) Pis’mav Zhetf, 89 (7), pp. 425-431; Gafner, S.L., Redel’, L.V., Gafner, Y.Y., Tight binding potential simulation of the structure formation in copper nanoclusters (2009) Zhetf, 135 (5), pp. 899-916; Sergeev, G.B., (2003) Nanochemistry, , MGU, Moscow; Polukhin Ans, V.A., Vatolin, N.A., (2011) Simulation of Disordered and Nanostructured Phases, , UrO RAN, Yekater inburg; Wang, Y., Teitel, S., Melting of icosahedral gold nanoclusters from molecular dynamics simulations (2005) J. Chem. Phys., 122 (12), pp. 1-16; Lewis, L.J., Jensen, P., Barrat, J.L., Melting, freezing, and coalescence of gold nanoclusters (1997) Phys. Rev. B, 56 (4), pp. 2248-2257; Polukhin, V.A., Kurbanova, E.D., Rigmant, L.K., Galashev, A.E., Vatolin, N.A., Molecular dynamics study of the size effects and the thermal stability of nanoclusters of a d (Ni, Pd) metal and silicon (2009) Perspektivnye Materialy, 4, pp. 13-21; Gafner, S.L., Redel’, L.V., Gafner, Y.Y., Role of kinetic factors during the formation of the structure of Ni clusters (2007) Metallofizika Noveishie Tekhnologii, 29 (7), pp. 981-988; Polukhin, V.A., Kurbanova, E.D., Galashev, A.E., Effect of the character of the (Ni, Pd) cluster/graphene interatomic bonds on the thermosize effects and structural–isomeric transitions (2012) Russian Metallurgy (Metally), 8, pp. 696-704; Galashev, A.E., Polukhin, V.A., Computer investigation of the physical properties of a copper film on the surface of heated graphene (2013) FTT, 55 (8), pp. 1620-1625
Correspondence Address Polukhin, V.A.; Institute of Metallurgy, Ural Branch, Russian Academy of SciencesRussian Federation
Publisher Maik Nauka-Interperiodica Publishing
Language of Original Document English
Abbreviated Source Title Russ. Metall. (Metally)
Source Scopus