Structure and thermal stability of noncrystalline silicon nanoparticles during heating and melting / Polukhin V.A., Galashev A.E. // Russian Metallurgy (Metally). - 2010. - V. 2010, l. 2. - P. 116-123.

ISSN:
00360295
Type:
Article
Abstract:
The changes in the structure and kinetic properties of glassy and amorphous Si300, Si400, and Si500 nanoparticles during heating from 300 to 1700 K are studied by molecular dynamics simulation. The nano-particle density increases with temperature and approaches the density of bulk solid silicon. As the temperature increases to 1400 K, a unimodal bond length distribution changes into a bimodal distribution, which is more pronounced for glassy nanoparticles. The average bond length in an amorphous nanoparticle is, as a rule, longer than in a glassy nanoparticle, and the average number of bonds per atom in it is smaller than in the glassy nanoparticle at almost all temperatures. The excess potential energy is negative in the central concentric layers of nanoparticles. In the vicinity of melting, liquid layers form in the near-surface region of nanoparticles. A kinetic criterion indicating the beginning of melting of nanoparticles is formulated. © 2010 Pleiades Publishing, Ltd.
Author keywords:
Index keywords:
Amorphous nanoparticles; Amorphous Si; Average numbers; Bimodal distribution; Bulk solids; Kinetic properties; Liquid layer; Molecular dynamics simulations; Near surface regions; Noncrystalline silico
DOI:
10.1134/S0036029510020084
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954152888&doi=10.1134%2fS0036029510020084&partnerID=40&md5=498b3767a53fa28a5279470cf7d13c95
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954152888&doi=10.1134%2fS0036029510020084&partnerID=40&md5=498b3767a53fa28a5279470cf7d13c95
Affiliations Institute of Metallurgy, Ural Division, Russian Academy of Sciences, ul. Amundsena 101, Yekaterinburg, 620016, Russian Federation
References Ho, K.M., Shvarsburg, A.A., Pan, B., Structures of Medium-Sized Silicon Cluster (1998) Nature, 392, pp. 582-585; Mitas, L., Grossman, J.C., Stock, I., Tobic, J., Silicon Clusters of Intermediate Size: Energetics, Dynamics, and Thermal Effects (2000) Phys. Rev. Lett., 84 (7), pp. 1479-1482; Zhao, Y., Kim, Y.-H., Du, M.-I., Zhang, S.B., First-Principles Prediction of Icosahedral Quantum Dots for Tetra valent Semiconductors (2004) Phys. Rev. Lett., 93, p. 015502; Sieck, A., Porezag, D., Frauenheim, T., Structure and Vibrational Spectra of Low -Energy Silicon Clusters (1997) Phys. Rev. A, 56 (6), pp. 4890-4898; Meloni, G., Ferguson, M.J., Sheehal, S.M., Neumark, D.M., Probing Structural Transitions of Nanosize Silicon Clusters via Anion Photoelectron Spectroscopy at 7.9 eV (2004) Chem. Phys. Lett., 399 (4), pp. 389-391; Kawazoe, Y., Kondow, T., Ohno, K., (2002) Clusters and Nanomaterials. Theory and Experiment, , Berlin: Springer; Galashev, A.E., Polukhin, V.A., Izmodenov, I.A., Galasheva, O.A., Computer Simulation of the Structure of Glassy and Amorphous Silicon Nanoparticles (2006) Poverkhnost, 1, pp. 41-49; Su, Y.-S., Pantelides, S.T., Diffusion Mechanism of Hydrogen in Amorphous Silicon: Ab initio Molecula Dynamics Simulation (2002) Phys. Rev. Lett., 88 (16), p. 165503; Stillinger, F.H., Weber, T.S., Computer Simulation of Local Order in Condensed Phases of Silicon (1985) Phys. Rev. B, 31 (8), pp. 5262-5271; Blaisten-Barojas, E., Zachariah, M.R., Molecular-Dynamics Study of Cluster Growth by Cluster-Cluster Collisions (1992) Phys. Rev. B, 45 (8), pp. 4403-4409; Verlet, L., Computer "Experiments" on Classic Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules (1967) Phys. Rev., 159, pp. 948-1003; Zachariah, M.R., Carrier, M.J., Properties of Silicon Nanoparticles: A Molecular Dynamics Study (1996) J. Phys. Chem., 100 (36), pp. 14856-14864; Vink, R.L.C., Barkema, G.T., van der, W.W.F., Mousseau, N., Fitting the Stillinger-Weber Potential to Amorphous Silicon (2001) J. Non-Cryst. Solids, 282, pp. 248-255; Kubicki, J.D., Lasaga, A.C., Molecular Dynamics Simulations of SiO2 Melt and Glass: Ionic and Cova-lent Models (1988) Am. Mineralogist, 73 (9), pp. 941-955; Briant, C.L., Burton, J.J., Melting of a Small Cluster of Atoms (1973) Nature Physical Science, 243 (11), pp. 100-102; Biswas, R., Grest, G.S., Soukoulis, C.M., Generation of Amorphous-Silicon Structures with Use of Molecular-Dynamics Simulations (1987) Phys. Rev. B, 36 (24), pp. 7437-7441; Bernal, J., King, S., Experimental Simulation of Simple Liquids (1968) Physics of Simple Liquids, , H. Temperley, J. Rowlinson, and G. Rushbrooke (Eds.), Amsterdam: North-Holland; Roorda, S., Sinke, W.C., Poate, J.M., Structural Relaxation and Defect Annihilation in Pure Amorphous-Silicon (1991) Phys. Rev. B, 44, p. 3702; Polukhin, V.A., Potemkina, E.V., Molecular Dynamics Simulation of Isomerization and Melting of Sin Nanoclusters (2001) Rasplavy, 6, pp. 62-80; Polukhin, V.A., (2004) Simulation of a Nanostructure and Precursor States, , [in Russian], Yekaterinburg: UrO RAN
Correspondence Address Polukhin, V. A.; Institute of Metallurgy, Ural Division, Russian Academy of Sciences, ul. Amundsena 101, Yekaterinburg, 620016, Russian Federation
Language of Original Document English
Abbreviated Source Title Russ. Metall. (Metally)
Source Scopus