Molecular dynamics simulation of the physicochemical properties of silicon nanoparticles containing 73 atoms / Galashev A.E., Polukhin V.A., Izmodenov I.A., Rakhmanova O.R. // Glass Physics and Chemistry. - 2007. - V. 33, l. 1. - P. 86-95.

ISSN:
10876596
Type:
Article
Abstract:
The physicochemical properties of 73-atom silicon nanoparticles that have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene are investigated using the molecular dynamics method. Analysis of the behavior of the internal energy, the radial distribution function, the distribution of bond angles, and the specific heat at a constant pressure C p in the temperature range 10-1710 K indicates that a crystalline nanoparticle undergoes melting at a temperature of 710 K and that the structural transformations occurring in particles with an irregular atomic packing exhibit specific features. It is demonstrated that the temperature dependence of the self-diffusion coefficient follows a linear behavior. Local deviations from the linear behavior are most pronounced for the crystalline nanoparticle. © Nauka/Interperiodica 2007.
Author keywords:
Index keywords:
Computer simulation; Crystal structure; Crystalline materials; Diffusion; Molecular dynamics; Silicon compounds; Bond angles; Self-diffusion coefficient; Temperature dependence; Nanostructured materia
DOI:
10.1134/S1087659607010130
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847392032&doi=10.1134%2fS1087659607010130&partnerID=40&md5=b94f943f86be384196737e8cf0ccad0f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847392032&doi=10.1134%2fS1087659607010130&partnerID=40&md5=b94f943f86be384196737e8cf0ccad0f
Affiliations Ural Division, Institute of Thermal Physics, Russian Academy of Sciences, ul. Amundsena 106, Yekaterinburg, 620219, Russian Federation; Ural Division, Institute of Metallurgy, Russian Academy of Sciences, ul. Amundsena 101, Yekaterinburg, 620219, Russian Federation; Ural Division, Institute of Industrial Ecology, Russian Academy of Sciences, ul. S. Kovalevskoi 20a, Yekaterinburg, 620219, Russian Federation
References Zhao, Y., Kim, Y.-H., Du, M.-H., Zhang, S.B., First-Principles Prediction of Icosahedral Quantum Dots for Tetravalent Semiconductors (2004) Phys. Rev. Lett, 93, p. 015502; Chen, Z., Jiao, H., Seifert, G., Horn, A.H.C., Yu, D., Clark, T., Thiel, W., von Ragué Schleyer, P., The Structure and Stability of Si 60 and Ge60 Cages: A Computational Study (2003) J. Comput. Chem, 24, pp. 948-953; Nishio, K., Koga, J., Yamaguchi, T., Yonezawa, F., Theoretical Study of Light-Emission Properties of Amorphous Silicon Quantum Dots (2003) Phys. Rev. B: Condens. Matter, 67, p. 195304; Park, N.-M., Choi, C.-J., Seong, T.-Y., Park, S.-J., Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride (2001) Phys. Rev. Lett, 86, pp. 1355-1357; Kim, B.-H., Cho, C.-H., Kim, T.-W., Park, N.-M., Sung, G.-Y., Park, S.-J., Photoluminescence of Silicon Quantum Dots in Silicon Nitride Grown by NH3 and SiH4 (2005) Appl. Phys. Lett, 86, p. 091908; Tersoff, J., New Empirical Model for the Structural Properties of Silicon (1986) Phys. Rev. Lett, 56 (6), pp. 632-635; Tersoff, J., New Empirical Approach for the Structure and Energy of Covalent Systems, Phys. Rev. B: Condens. Matter, 1988, 37, no. 10, pp. 6991-7000; Vink, R.L.C., Barkema, G.T., van der Weg, W.F., Mousseau, N., Fitting the Stillinger-Weber Potential to Amorphous Silicon (2001) J. Non-Cryst. Solids, 282, pp. 248-255; Zhang, L., Jiang, S., Molecular Simulation Study of Nanoscale Friction for Alkyl Monolayers on Si (2002) J. Chem. Phys, 117 (4), pp. 1804-1811; Polukhin, V.A., Vatolin, N.A., Carbon: From a Melt to a Fullerene (1998) Rasplavy, (4), pp. 3-32; Spravochnik khimika (A Handbook for Chemists), Nikol'skii, V.P., Ed., Leningrad: Khimiya, 1971, 1 [in Russian]; Bellisent, R., Menelle, A., Howells, W.S., Wright, A.C., Brunier, T.M., Sinclair, R.N., Jansen, F., The Structure of Amorphous Si: H Using Steady-State and Pulsed Neutron Sources (1989) Physica B (Amsterdam), 156-157, pp. 217-219. , vols; Kubicki, J.D., Lasaga, A.C., Molecular Dynamics Simulations of SiO2 Melt and Glass: Ionic and Covalent Moldels (1988) Am. Mineral, 73, pp. 941-955; Zachariah, M.R., Carrier, M.J., Blaisten-Barojas, E., Properties of Silicon Nanoparticles: A Molecular Dynamics Study (1996) J. Phys. Chem, 100, pp. 14856-14864; Hawa, T., Zachariah, M.R., Internal Pressure and Surface Tension of Bare and Hydrogen Coated Silicon Nanoparticles (2004) J. Chem. Phys, 121 (18), pp. 9043-9049; Miranda, C.R., Antonelli, A., Transitions between Disordered Phases in Supercooled Liquid Silicon (2004) J. Chem. Phys, 120 (24), pp. 11672-11676; Bazarov, I.P., (1976) Termodinamika, , Thermodynamics, Moscow: Vysshaya Shkola, in Russian; Kawazoe, Y., Kondow, T., Ohno, K., (2002) Clusters and Nanomaterials: Theory and Experiment, , Berlin: Springer-Verlag; Baidakov, V.G., Galashev, A.E., Skripov, V.P., Stability of a Superheated Crystal in the Molecular Dynamics Model of Argon (1980) Fiz. Tverd. Tela (Leningrad), 22 (9), pp. 2681-2687; [Sov. Phys. Solid State (Engl. transl.), 1980, 22, no. 9, pp. 1565-1568]; Nishio, K., Morishita, T., Shinoda, W., Mikami, M., Molecular Dynamics Simulation of Icosahedral Si Quantum Dot Formation from Liquid Droplets (2005) Phys. Rev. B: Condens. Matter, 72, p. 24532
Correspondence Address Galashev, A.E.; Ural Division, Institute of Thermal Physics, Russian Academy of Sciences, ul. Amundsena 106, Yekaterinburg, 620219, Russian Federation; email: galashev@ecko.uran.ru
Language of Original Document English
Abbreviated Source Title Glass Phys. Chem.
Source Scopus