References |
Zhao, Y., Kim, Y.-H., Du, M.-H., Zhang, S.B., First-Principles Prediction of Icosahedral Quantum Dots for Tetravalent Semiconductors (2004) Phys. Rev. Lett, 93, p. 015502; Chen, Z., Jiao, H., Seifert, G., Horn, A.H.C., Yu, D., Clark, T., Thiel, W., von Ragué Schleyer, P., The Structure and Stability of Si 60 and Ge60 Cages: A Computational Study (2003) J. Comput. Chem, 24, pp. 948-953; Nishio, K., Koga, J., Yamaguchi, T., Yonezawa, F., Theoretical Study of Light-Emission Properties of Amorphous Silicon Quantum Dots (2003) Phys. Rev. B: Condens. Matter, 67, p. 195304; Park, N.-M., Choi, C.-J., Seong, T.-Y., Park, S.-J., Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride (2001) Phys. Rev. Lett, 86, pp. 1355-1357; Kim, B.-H., Cho, C.-H., Kim, T.-W., Park, N.-M., Sung, G.-Y., Park, S.-J., Photoluminescence of Silicon Quantum Dots in Silicon Nitride Grown by NH3 and SiH4 (2005) Appl. Phys. Lett, 86, p. 091908; Tersoff, J., New Empirical Model for the Structural Properties of Silicon (1986) Phys. Rev. Lett, 56 (6), pp. 632-635; Tersoff, J., New Empirical Approach for the Structure and Energy of Covalent Systems, Phys. Rev. B: Condens. Matter, 1988, 37, no. 10, pp. 6991-7000; Vink, R.L.C., Barkema, G.T., van der Weg, W.F., Mousseau, N., Fitting the Stillinger-Weber Potential to Amorphous Silicon (2001) J. Non-Cryst. Solids, 282, pp. 248-255; Zhang, L., Jiang, S., Molecular Simulation Study of Nanoscale Friction for Alkyl Monolayers on Si (2002) J. Chem. Phys, 117 (4), pp. 1804-1811; Polukhin, V.A., Vatolin, N.A., Carbon: From a Melt to a Fullerene (1998) Rasplavy, (4), pp. 3-32; Spravochnik khimika (A Handbook for Chemists), Nikol'skii, V.P., Ed., Leningrad: Khimiya, 1971, 1 [in Russian]; Bellisent, R., Menelle, A., Howells, W.S., Wright, A.C., Brunier, T.M., Sinclair, R.N., Jansen, F., The Structure of Amorphous Si: H Using Steady-State and Pulsed Neutron Sources (1989) Physica B (Amsterdam), 156-157, pp. 217-219. , vols; Kubicki, J.D., Lasaga, A.C., Molecular Dynamics Simulations of SiO2 Melt and Glass: Ionic and Covalent Moldels (1988) Am. Mineral, 73, pp. 941-955; Zachariah, M.R., Carrier, M.J., Blaisten-Barojas, E., Properties of Silicon Nanoparticles: A Molecular Dynamics Study (1996) J. Phys. Chem, 100, pp. 14856-14864; Hawa, T., Zachariah, M.R., Internal Pressure and Surface Tension of Bare and Hydrogen Coated Silicon Nanoparticles (2004) J. Chem. Phys, 121 (18), pp. 9043-9049; Miranda, C.R., Antonelli, A., Transitions between Disordered Phases in Supercooled Liquid Silicon (2004) J. Chem. Phys, 120 (24), pp. 11672-11676; Bazarov, I.P., (1976) Termodinamika, , Thermodynamics, Moscow: Vysshaya Shkola, in Russian; Kawazoe, Y., Kondow, T., Ohno, K., (2002) Clusters and Nanomaterials: Theory and Experiment, , Berlin: Springer-Verlag; Baidakov, V.G., Galashev, A.E., Skripov, V.P., Stability of a Superheated Crystal in the Molecular Dynamics Model of Argon (1980) Fiz. Tverd. Tela (Leningrad), 22 (9), pp. 2681-2687; [Sov. Phys. Solid State (Engl. transl.), 1980, 22, no. 9, pp. 1565-1568]; Nishio, K., Morishita, T., Shinoda, W., Mikami, M., Molecular Dynamics Simulation of Icosahedral Si Quantum Dot Formation from Liquid Droplets (2005) Phys. Rev. B: Condens. Matter, 72, p. 24532 |