Simulation of noncrystalline silicon nanoparticles: A computer experiment / Galashev A.E., Polukhin V.A., Izmodenov I.A., Rakhmanova O.R. // Glass Physics and Chemistry. - 2006. - V. 32, l. 1. - P. 99-105.

ISSN:
10876596
Type:
Article
Abstract:
The physical properties of vitreous and amorphous silicon nanoparticles containing 300, 400, and 500 atoms are investigated by the molecular dynamics method. For a limited number of degrees of freedom, the internal energy of the amorphous phase is often less than the internal energy of the vitreous phase. The structure of the central region of silicon nanoparticles is studied in detail by constructing Voronoi polyhedra, which make it possible to determine the mean length of bonds and their number. The differences between the structures of nanoparticles in the amorphous and vitreous states are determined by the differences in the distribution of angles between Si-Si bonds and the distribution of bond lengths. Local arrangements of atoms in vitreous silicon nanoparticles are characterized by larger variations in the interatomic distances. The self-diffusion coefficients determined from mean-square atomic displacements are smaller for amorphous nanoparticles due to dominant diffusion over dangling Si-Si bonds. © Pleiades Publishing, Inc., 2006.
Author keywords:
Index keywords:
Amorphous materials; Computer simulation; Degrees of freedom (mechanics); Diffusion; Molecular dynamics; Silicon; Amorphous silicon nanoparticles; Internal energy; Noncrystalline silicon nanoparticles
DOI:
10.1134/S1087659606010135
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33644954121&doi=10.1134%2fS1087659606010135&partnerID=40&md5=d0801789b9ac08929ffdc6c44709751f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-33644954121&doi=10.1134%2fS1087659606010135&partnerID=40&md5=d0801789b9ac08929ffdc6c44709751f
Affiliations Ural Division, Institute of Thermal Physics, Russian Academy of Sciences, ul. Amundsena 106, Yekaterinburg 620219, Russian Federation; Ural Division, Institute of Metallurgy, Russian Academy of Sciences, ul. Amundsena 101, Yekaterinburg 620219, Russian Federation; Ural Division, Institute of Industrial Ecology, Russian Academy of Sciences, ul. S. Kovalevskoi 20a, Yekaterinburg 620219, Russian Federation
References Galashev, A.E., Stability of single vacancies and multiple vacancies in a nickel nanoparticle (2005) Poverkhnost, (1), pp. 77-84; Kawazoe, Y., Kondow, T., Ohno, K., (2002) Clusters and Nanomaterials: Theory and Experiment, , Berlin: Springer-Verlag; Kaxiras, E., Jackson, K., Shape of small silicon clusters (1993) Phys. Rev. Lett., 71 (5), pp. 727-730; Ohno, K., Esfarjani, K., Kawazoe, Y., (1999) Computational Materials Science: From Ab Initio to Monte Carlo Methods, , Berlin: Springer-Verlag; Polukhin, V.A., (2004) Modelirovanie Nanostruktury i Prekursornykh Sostoyanii (Simulation of Nanostructures and Precursor States), , Yekaterinburg: Ural. Old. Ross. Akad. Nauk; Ramakrishna, M.V., Pan, J., Chemical reactions of silicon clusters (1994) J. Chem. Phys., 101 (9), pp. 8108-8118; Donovan, E.P., Spaepen, F., Turnbull, D., Calorimetric studies of crystallization and relaxation of amorphous Si and Ge prepared by ion implantation (1985) J. Appl. Phys., 57 (7), pp. 1795-1804; Keblinski, P., Bazant, M.Z., Dash, R.K., Thermodynamic behavior of a model covalent material described by the environment-dependent interatomic potential (2002) Phys. Rev. B: Condens. Matter, 66 (6), pp. 4101-4118; Broughton, J.Q., Li, X.P., Phase diagram of silicon by molecular dynamics (1987) Phys. Rev. B: Condens. Matter, 35 (17), pp. 9120-9127; Luedtke, W.D., Landman, U., Preparation, structure, dynamics, and energetic of amorphous silicon: A molecular dynamics study (1989) Phys. Rev. B: Condens. Matter, 40 (2), pp. 1164-1174; Sastry, S., Angell, C.A., Liquid - Liquid phase transition in supercooled silicon (2003) Nature Mater., 2, pp. 739-743; Biswas, R., Grest, G.S., Soukoulis, C.M., Generation of amorphous-silicon structures with use of molecular-dynamics simulations (1987) Phys. Rev. B: Condens. Matter, 36, pp. 7437-7441; Biswas, R., Bouchard, A.M., Kamitakahara, W.A., Vibrational localization in amorphous silicon (1988) Phys. Rev. Lett., 60 (22), pp. 2280-2283; Kwon, I., Biswas, R., Soukoulis, C.M., Molecular dynamic simulations of defect formation in hydrogenated amorphous silicon (1992) Phys. Rev. B: Condens. Matter, 45 (7), pp. 3332-3339; Deb, S.K., Wilding, M., Somayazulu, M., Pressure-induced amorphization and amorphous - Amorphous transition in densified porous silicon (2001) Nature (London), 414 (6863), pp. 528-530; Rothlisberger, U., Andreoni, W., Parrinello, M., The structure of nanoscale silicon clusters (1994) Phys. Rev. Lett., 72 (5), pp. 665-668; Kobayashi, K., Nagase, S.A., Theoretical study of stability of the fullerene-like cage structures of silicon clusters (1993) Bull. Chem. Soc. Jpn., 66, pp. 3334-3338; Zachariah, M.R., Carrier, M.J., Blaisten-Barojas, E., Properties of silicon nanoparticles: A molecular dynamics study (1996) J. Phys. Chem., 100, pp. 14856-14864; Stillinger, F.H., Weber, T.A., Computer simulation of local order in condensed phases of silicon (1985) Phys. Rev. B: Condens. Matter, 31 (8), pp. 5262-5271; Vink, R.L.C., Barkema, G.T., Van Der Weg, W.F., Mousseau, N., Fitting the stillinger - Weber potential to amorphous silicon (2001) J. Non-cryst. Solids, 282, pp. 248-255; Verlet, L., Computer "experiments" on classical fluids: L. Thermodynamical properties of Lennard-Jones molecules (1967) Phys. Rev., 159 (1), pp. 98-103; Kubicki, J.D., Lasaga, A.C., Molecular dynamics simulations of SiO2 melt and glass: Ionic and covalent models (1988) Am. Mineral., 73, pp. 941-955; Polukhin, V.A., Kibanova, E.A., Molecular dynamics simulations of amorphization of carbon and thermal destruction of fullerene C60 (1999) Zh. Fiz. Khim., 73 (3), pp. 494-499; (1999) Russ. J. Phys. Chem. (Engl. Transl.), 73 (3), pp. 421-426; Wang, C.Z., Tight-binding molecular-dynamics study of liquid Si (1992) Phys. Rev. B: Condens. Matter, 45 (21), pp. 12227-12232
Correspondence Address Galashev, A.E.; Ural Division, Institute of Thermal Physics, Russian Academy of Sciences, ul. Amundsena 106, Yekaterinburg 620219, Russian Federation
Language of Original Document English
Abbreviated Source Title Glass Phys. Chem.
Source Scopus