Hyperthermia in a system of rod-like ferromagnetic particles under oscillating magnetic field / Zubarev A.Y., Abu-Bakr A.F., Bossis G., Bulycheva S.V. // Magnetohydrodynamics. - 2014. - V. 50, l. 4. - P. 397-406.

ISSN:
0024998X
Type:
Article
Abstract:
Results of theoretical modelling of heat production in a dilute suspension of fiber ferromagnetic particles under the action of a linearly polarized oscillating magnetic field are reported. The particles are assumed to be placed in a Maxwell viscoelastic liquid, which, in the first approximation, models biological liquids. Two mechanisms of heat production, namely, the particle rotation in the liquid and its internal remagnetization are considered. The effect of the particle shape, its magnetic properties and rheological properties of the carrier liquid on the intensity of the heat production are studied.
Author keywords:
Index keywords:
нет данных
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928343597&partnerID=40&md5=f02357a6ee976c9fa8ee0bda0f1cb54e
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928343597&partnerID=40&md5=f02357a6ee976c9fa8ee0bda0f1cb54e
Affiliations Urals Federal University, 51 Lenin Ave, Ekaterinburg, Russian Federation; Menoufiya University, Shebin El-Koom, Egypt; LPMC, CNRS, UMR 7336, University of Nice-Sophia Antipolis, Parc Valrose, Nice, France; Nosov Magnitogorsk State Technical University, 38 Lenin str., 38, Magnitogorsk, Russian Federation
Funding Details 13-01-96047, RFBR, Russian Foundation for Basic Research; 13-02-91052, RFBR, Russian Foundation for Basic Research; 14-08-00283, RFBR, Russian Foundation for Basic Research
References Wang, B., (2012) Rheology and Magnetolysis of Tumor Cells, , PhD Thesis. Universite de Nice-Sophia Antipolis - UFR Sciences, France; Panhurst, Q., Connolly, J., Jones, S.K., Applications of magnetic nanoparticles in biomedicine (2003) J. Phys. D: Appl. Phys., 36, pp. 167-181; Trahms, L., Application of Magnetic Nanoparticles, Biomedical Application of Magnetic Nanoparticles (2009) Lecture Notes in Physics 763, Colloidal Magnetic Fluids, , Ed. S. Odenbach; Lu, A., Schmitd, W., Matoussevitch, N., Bonnemann, H., Spliethoff, B., Tesche, B., Nanoengineering of a magnetically separable hydrogenation catalyst (2004) Angew. Chem. Int. Ed., 43, pp. 4303-4306; Gupla, A.K., Gupla, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications (2005) Biomaterials, 26, pp. 3995-4021; Gleich, B., Weizenecker, J., Tomographic imaging using the nonlinear response of magnetic particles (2005) Nature Letters, 435, pp. 1214-1217; Armijo, L.M., Brandt, Y.L., Marthew, D., Yadav, S., Maestas, S., Rivera, A., Iron oxide nanocrystals for magnetic hyperthermia applications (2012) Nanomaterials, 2, pp. 134-146; Nedeleu, G., Magnetic nanoparticles impact on tumoral cells in the treatment by magnetic fluid hyperthermia (2008) Digest Journal of Nanomaterials and Biostructures, 3, pp. 103-107; Habash, R., Bansal, R., Krewski, D., Alhafid, H., Thermal therapy, part 1: An introduction to thermal therapy (2006) Crit. Rev. Biomed. Eng., 34, pp. 459-489; Shiliomis, M.L., Effective viscosity of magnetic suspensions (1972) Sov. Phys. JETP, 34, pp. 1291-1294. , in Russian; Shiliomis, M.L., Non-linear effects in suspension of ferromagnetic particles under action of a rotating magnetic field (1975) Sov. Phys. Reports, 19, pp. 686-687. , in Russian; Levi, A.C., Hobson, R.F., Mccourt, F.R., Magnetoviscosity of colloidal suspensions (1973) Can. J. Phys., 51, pp. 180-194; Shiliomis, M.L., Lyubimova, T.P., Lyubimova, D.V., Ferrohydrodynamics:An essay on the progress of ideas (1988) Chem. Eng. Comm., 67, pp. 275-290; Felderhof, B.U., Nonlinear response of a dipolar system with rotational diffusion to a rotating field (2002) Phys. Rev. E, 66, p. 051503; Raikher, Y.L., Stepanov, V.I., Power losses in a suspension of magnetic dipoles under a rotating field (2011) Phys. Rev, 83, p. 021401; Cebers, A., Ozols, M., Dynamics of an active magnetic particle in a rotating magnetic field (2006) Phys. Rev. E, 73, p. 021505; Xuman, W., Hongchen, G., Zhengqiang, Y., The heating effect of magnetic fluids in an alternating magnetic field (2005) J. Magnetism and Magnetic Materials, 293, pp. 334-340; Landau, L.D., Lifshitz, E.M., (1960) Electrodynamics of Continuous Media, , Pergamon Press; Wilhelm, C., Gazeau, F., Bacri, J.C., Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells (2003) Physical Review E, 67, p. 061908; Chevry, L., Sampathkumar, N.K., Cebers, A., Berret, J.F., Magnetic wire-based sensors for the microrheology of complex fluids (2013) Physical Review E., 88, p. 062306; Pokrovskii, V.N., (1978) Statistical Hydromechanics of Dilute Suspensions, , Nauka Publ. House, Moscow, (in Russian; Mendez-Garza, J., Wang, B., Madeira, A., Vierling, P., DIGiorgio, C., Bossis, G., Synthesis and surface modification of spindle-type magnetic nanoparticles: gold coating and PEG functionalization (2013) Journal of Biomaterials and Nanobiotechnology, 4, pp. 222-228
Publisher Latvijas Universitate
Language of Original Document English
Abbreviated Source Title Magnetohydrodynamics
Source Scopus