References |
Wang, B., (2012) Rheology and Magnetolysis of Tumor Cells, , PhD Thesis. Universite de Nice-Sophia Antipolis - UFR Sciences, France; Panhurst, Q., Connolly, J., Jones, S.K., Applications of magnetic nanoparticles in biomedicine (2003) J. Phys. D: Appl. Phys., 36, pp. 167-181; Trahms, L., Application of Magnetic Nanoparticles, Biomedical Application of Magnetic Nanoparticles (2009) Lecture Notes in Physics 763, Colloidal Magnetic Fluids, , Ed. S. Odenbach; Lu, A., Schmitd, W., Matoussevitch, N., Bonnemann, H., Spliethoff, B., Tesche, B., Nanoengineering of a magnetically separable hydrogenation catalyst (2004) Angew. Chem. Int. Ed., 43, pp. 4303-4306; Gupla, A.K., Gupla, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications (2005) Biomaterials, 26, pp. 3995-4021; Gleich, B., Weizenecker, J., Tomographic imaging using the nonlinear response of magnetic particles (2005) Nature Letters, 435, pp. 1214-1217; Armijo, L.M., Brandt, Y.L., Marthew, D., Yadav, S., Maestas, S., Rivera, A., Iron oxide nanocrystals for magnetic hyperthermia applications (2012) Nanomaterials, 2, pp. 134-146; Nedeleu, G., Magnetic nanoparticles impact on tumoral cells in the treatment by magnetic fluid hyperthermia (2008) Digest Journal of Nanomaterials and Biostructures, 3, pp. 103-107; Habash, R., Bansal, R., Krewski, D., Alhafid, H., Thermal therapy, part 1: An introduction to thermal therapy (2006) Crit. Rev. Biomed. Eng., 34, pp. 459-489; Shiliomis, M.L., Effective viscosity of magnetic suspensions (1972) Sov. Phys. JETP, 34, pp. 1291-1294. , in Russian; Shiliomis, M.L., Non-linear effects in suspension of ferromagnetic particles under action of a rotating magnetic field (1975) Sov. Phys. Reports, 19, pp. 686-687. , in Russian; Levi, A.C., Hobson, R.F., Mccourt, F.R., Magnetoviscosity of colloidal suspensions (1973) Can. J. Phys., 51, pp. 180-194; Shiliomis, M.L., Lyubimova, T.P., Lyubimova, D.V., Ferrohydrodynamics:An essay on the progress of ideas (1988) Chem. Eng. Comm., 67, pp. 275-290; Felderhof, B.U., Nonlinear response of a dipolar system with rotational diffusion to a rotating field (2002) Phys. Rev. E, 66, p. 051503; Raikher, Y.L., Stepanov, V.I., Power losses in a suspension of magnetic dipoles under a rotating field (2011) Phys. Rev, 83, p. 021401; Cebers, A., Ozols, M., Dynamics of an active magnetic particle in a rotating magnetic field (2006) Phys. Rev. E, 73, p. 021505; Xuman, W., Hongchen, G., Zhengqiang, Y., The heating effect of magnetic fluids in an alternating magnetic field (2005) J. Magnetism and Magnetic Materials, 293, pp. 334-340; Landau, L.D., Lifshitz, E.M., (1960) Electrodynamics of Continuous Media, , Pergamon Press; Wilhelm, C., Gazeau, F., Bacri, J.C., Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells (2003) Physical Review E, 67, p. 061908; Chevry, L., Sampathkumar, N.K., Cebers, A., Berret, J.F., Magnetic wire-based sensors for the microrheology of complex fluids (2013) Physical Review E., 88, p. 062306; Pokrovskii, V.N., (1978) Statistical Hydromechanics of Dilute Suspensions, , Nauka Publ. House, Moscow, (in Russian; Mendez-Garza, J., Wang, B., Madeira, A., Vierling, P., DIGiorgio, C., Bossis, G., Synthesis and surface modification of spindle-type magnetic nanoparticles: gold coating and PEG functionalization (2013) Journal of Biomaterials and Nanobiotechnology, 4, pp. 222-228 |