Synthesis of luminescent Si Nanoparticles using the laser-induced pyrolysis / Vladimirov A., Korovin S., Surkov A., Kelm E., Pustovoy V. // Laser Physics. - 2011. - V. 21, l. 4. - P. 830-835.

ISSN:
1054660X
Type:
Article
Abstract:
The synthesis of silicon nanoparticles in the reaction of the silane pyrolysis is presented. The reaction of the silane decomposition is performed in a flow reactor in the presence of the cw CO2-laser irradiation. As-prepared Si nanoparticles are studied with the aid of transmission electron microscope, fiber spectrometer, and FTIR spectrometer. Spherical Si nanoparticles with a diameter of about 15 nm are produced. The luminescence of the as-prepared nanoparticles is virtually absent. The nanoparticles are etched in acid vapor and are oxidized to increase the luminescence quantum yield. After the chemical treatment, the mean size of the crystalline core of nanoparticles decreases to 5 nm and the luminescence spectrum exhibits the band peaked at 730 nm. © 2011 Pleiades Publishing, Ltd.
Author keywords:
Index keywords:
Acid vapors; Chemical treatments; Crystalline core; Flow reactors; FT-IR-spectrometers; Laser irradiations; Laser-induced pyrolysis; Luminescence quantum yields; Luminescence spectrum; Mean size; Si n
DOI:
10.1134/S1054660X11080032
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955919902&doi=10.1134%2fS1054660X11080032&partnerID=40&md5=6ad46650058ab02f3125d43c274fd10d
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955919902&doi=10.1134%2fS1054660X11080032&partnerID=40&md5=6ad46650058ab02f3125d43c274fd10d
Affiliations Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, Moscow 119991, Russian Federation
References Wang, J., Jiang, H., Wang, W., Zheng, J., (1992) Phys. Rev. Lett., 69, p. 3252. , 10.1103/PhysRevLett.69.3252 1992PhRvL.69.3252W; Dneprovskii, V.S., Karavanskii, V.A., Klimov, V.I., Maslov, A.P., (1993) JETP Lett., 57, p. 406. , 1993JETPL.57.406D; Vijayalakshmi, S., George, M.A., Grebel, H., (1997) Appl. Phys. Lett., 70, p. 708. , 10.1063/1.118246 1997ApPhL.70.708V; Korovin, S.B., Pustovoi, V.I., Orlov, A.N., (1999) Proc. SPIE, 4070, p. 472. , 10.1117/12.378196 2000SPIE.4070.472K; Korovin, S.B., Pustovoi, V.I., Krinetskii, B.B., Fadeeva, S., (1999) Proc. SPIE, 4070, p. 465. , 10.1117/12.378195 2000SPIE.4070.465K; Korovin, S.B., Krasovskii, V.I., Pustovoi, V.I., (1999) Proc. SPIE, 4070, p. 479. , 10.1117/12.378197 2000SPIE.4070.479K; Koudoumas, E., Kokkinaki, O., Konstantaki, M., Couris, S., Korovin, S., Pustovoi, V., Ogluzdin, V.E., Nonlinear optical response of silicon nanocomposites (2002) Proceedings of SPIE - The International Society for Optical Engineering, 4762, pp. 297-301. , DOI 10.1117/12.478649; Klostranec, J.M., Chan, W.C.W., Quantum dots in biological and biomedical research: Recent progress and present challenges (2006) Advanced Materials, 18 (15), pp. 1953-1964. , DOI 10.1002/adma.200500786; Hua, F., Swihart, M.T., Ruckenstein, E., Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation (2005) Langmuir, 21 (13), pp. 6054-6062. , DOI 10.1021/la0509394; Ledoux, G., Gong, J., Huisken, F., Guillois, O., Reynaud, C., Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement (2002) Applied Physics Letters, 80 (25), p. 4834. , DOI 10.1063/1.1485302; Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B., Paillard, V., Photoluminescence properties of silicon nanocrystals as a function of their size (2000) Physical Review B - Condensed Matter and Materials Physics, 62 (23), pp. 15942-15951. , DOI 10.1103/PhysRevB.62.15942; Takagahara, T., Takeda, K., (1992) Phys. Rev. B, 46, p. 15578. , 10.1103/PhysRevB.46.15578 1992PhRvB.4615578T; Draeger, E.W., Grossman, J.C., Williamson, A.J., Galli, G., (2003) Phys. Rev. Lett., 90, pp. 167402-1. , 10.1103/PhysRevLett.90.167402 2003PhRvL.90p7402D; Erogbogbo, F., Yong, K.T., Roy, I., Xu, G., Prasad, P.N., Swihart, M.T., (2008) ACS Nano, 2, p. 873. , 10.1021/nn700319z; D'Amato, R., Falconieri, M., Carpanese, M., Fabbri, F., Borsella, E., Strong luminescence emission enhancement by wet oxidation of pyrolytic silicon nanopowders (2007) Applied Surface Science, 253 (19), pp. 7879-7883. , DOI 10.1016/j.apsusc.2007.02.069, PII S0169433207002772, Photon-Assisted Synthesis and Processing of Functional Materials; Vladimirov, A., Korovin, S., Pustovoy, V., (2008) Proceedings of the First International Nanotechnology Forum Rusnanotech-08, pp. 767-770. , Moscow, Russia, Dec. 3-5; Karpo, A., Korovin, S., Orlov, A., Pustovoy, V., (2009) Laser Phys., 19, p. 1377. , 2009LaPhy.19.1377K; Campbell, I.H., Fauchet, P.M., Effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors (1986) Solid State Communications, 58 (10), pp. 739-741. , DOI 10.1016/0038-1098(86)90513-2; Huisken, F., Ledoux, G., Guillois, O., Reynaud, C., (2002) Adv. Mater., 14, p. 1861. , 10.1002/adma.200290021
Correspondence Address Vladimirov, A.; Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, Moscow 119991, Russian Federation; email: vladimirov.alex@gmail.com
Language of Original Document English
Abbreviated Source Title Laser Phys.
Source Scopus