References |
Burkard, R., Dell’Amico, M., Martello, S., (2009) Assignment Problems, , SIAM, Philadelphia; De Kort, J.B.J.M., Lower bounds for symmetric K-peripatetic salesman problems (1991) Optimization, 22 (1), pp. 113-122; Dinits, E.A., Kronrod, M.A., One algorithm for solving the assignment problem (1969) Dokl. Akad Nauk SSSR, 189 (1), pp. 23-25; Garey, M.R., Johnson, D.S., (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness, , Freeman, San Fransisco; Kh, E., Gimadi, “Approximation efficient algorithms with performance guarantees for some hard routing problems,” in Optimization and Applications: Proceedings of the Second International Conference, Petrovac (2011) Montenegro, pp. 98-101; Håstad, J., Clique is hard to approximate within n 1 − ε (1999) Acta Math, 182 (1), pp. 105-142; Kleinschmidt, P., Schannath, H., A strongly polynomial algorithm for the transportation problem (1995) Math. Programming, 68 (1), 13p; Krarup, J., The peripatetic salesman and some related unsolved problems (1975) Combinatorial Programming: Methods and Applications, pp. 173-178. , Roy B, (ed), NATO Advanced Study Institutes Series, 19, Reidel, Dordrecht; Park, K., Lee, K., Park, S., An extended formulation approach to the edge-weighted maximal clique problem (1996) European J. Oper. Res, 95, pp. 671-682; Prim, R.C., Shortest connection networks and some generalizations (1957) Bell System Technical J, 36 (6), pp. 1389-1401; Roskind, J., Tarjan, R.E., A note on finding minimum-cost edge-disjoint spanning trees (1985) Math. Oper. Res, 10 (4), pp. 701-708; Spieksma, F.C.R., Multi-index assignment problems: Complexity, approximation, applications (2000) Nonlinear Assignment Problems: Algorithms and Applications, 12p. , Pitsoulis L, Pardalos P, (eds), Ser. Combinatorial Optimization, 7, Kluwer, Dordrecht; Gutin, G., Punnen, A.P., (2002) The Traveling Salesman Problem and Its Variations, , (eds), Ser. Combinatorial Optimization, 12, Kluwer, Dordrecht; Baburin, A.E., Gimadi, E.K., On the asymptotic optimality of an algorithm for solving the maximum m-PSP in a multidimensional Euclidean space (2011) Proc. Steklov Inst. Math, 272, pp. 1-13; Galashov, A.E., Kel’manov, A.V., A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets (2014) Autom. Remote Control, 75 (4), pp. 595-606; Gimadi, E.K., Glazkov, Y.V., Glebov, A.N., Approximation algorithms for solving the 2-peripatetic salesman problem on a complete graph with edge weights 1 and 2 (2007) J. Appl. Ind. Math, 3 (1), pp. 46-60; Eremin, I.I., Gimadi, E.K., Kel’manov, A.V., Pyatkin, A.V., Khachai, M.Y., 2-Approximation algorithm for finding a clique with minimum weight of vertices and edges (2014) Proc. Steklov Inst. Math, 284, pp. 87-95; Kel’manov, A.V., Pyatkin, A.V., NP-completeness of some problems of choosing a vector subset (2011) J. Appl. Ind. Math, 5 (3), pp. 352-357; Kel’manov, A.V., Romanchenko, S.M., An approximation algorithm for solving a problem of search for a vector subset (2012) J. Appl. Ind. Math, 6 (4), pp. 90-96 |