Discriminative power for ensembles of linear decision rules / Kobylkin K.S., Khachai M.Y. // Pattern Recognition and Image Analysis. - 2013. - V. 23, l. 3. - P. 352-358.

ISSN:
10546618
Type:
Article
Abstract:
A novel class of ensembles of linear decision rules is introduced which includes majority voting-based ensembles as a particular case. Based on this general framework, new results are given that state the ability of a subclass to discriminate between two infinite subsets A and B in R n, thus generalizing Mazurov's theorem for two finite sets. © 2013 Pleiades Publishing, Ltd.
Author keywords:
committee decision rule; separation of two sets
Index keywords:
Committee decision rules; Discriminative power; Finite set; Linear decision rules; New results; Computer vision; Pattern recognition
DOI:
10.1134/S1054661813030073
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884381380&doi=10.1134%2fS1054661813030073&partnerID=40&md5=9f678c61ef8eb116860e4c76a0ce4450
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884381380&doi=10.1134%2fS1054661813030073&partnerID=40&md5=9f678c61ef8eb116860e4c76a0ce4450
Affiliations Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. Sof'i Kovalevskoi 16, Yekaterinburg, 620990, Russian Federation; Ural Federal University, ul. Mira 19, Yekaterinburg, 620002, Russian Federation; Omsk State Technical University, pr. Mira 11, Omsk, 644050, Russian Federation
Author Keywords committee decision rule; separation of two sets
References Mazurov, V.D., (1990) Committee Method in Optimization and Classification Problems, , Moscow: Science; Khachai, M.Y., Sufficient training sample length for committee decision rule (2000) Iskusstv. Intellekt, No. 2, pp. 219-223; Krivonogov, A.I., Some grounding problems for committee algorithm (1981) Classification and Optimization in Control Problems, pp. 39-51. , Sverdlovsk: Ufa Sci. Center of RAS; Kobylkin, K.S., Committee existence problems for linear inequalities (2005) Available from VINITI No. 430-V2005; Kamenev, G.K., (2007) Optimal Adaptive Methods of Polyhedral Approximation for Convex Bodies, , Moscow: Dorodnicyn Computing Centre of RAS
Correspondence Address Kobylkin, K. S.; Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. Sof'i Kovalevskoi 16, Yekaterinburg, 620990, Russian Federation; email: kobylkin@imm.uran.ru
Language of Original Document English
Abbreviated Source Title Pattern Recogn. Image Anal.
Source Scopus