References |
Vapnik, V.N., (1998) Statistical Learning Theory, , New York: Wiley; Zhuravlev, Y.I., The Algebraic Approach for Solving the Recognition or Classification Problems (1978) Probl. Kibernet., (33), pp. 5-68; Blum, A., Rivest, R.L., Training a 3-Node Neural Network Is NP-Complete (1988) Advances in Neural Information Processing Systems, , D. S. Touretzky (Ed.), San Mateo: M. Kaufmann; Lin, J.H., Vitter, J.S., Complexity Results on Learning by Neural Nets (1991) Mach. Learn., 6, pp. 211-230; Khachay, M., On the Computational Complexity of the Minimum Committee Problem (2007) J. Math. Model. Algor., 6 (4), pp. 547-561; Khachai, M., Poberii, M., Complexity and Approximability of Committee Polyhedral Separability of Sets in General Position (2009) Informatica, 20 (2), pp. 217-234; Dinur, I., The PCP Theorem by Gap Amplification (2007) J. ACM, 54 (3); Mazurov, V.D., Committees for Sets of Inequalities and the Problem of Pattern Recognition (1971) Kibernet., (3), pp. 140-146; Khachai, M., Mazurov, V., Rybin, A., Committee Construction for Solving Problems of Selection, Diagnostics, and Prediction (2002) Proc. Steklov Inst. Math., (SUPPL. 1), pp. 67-101; Khachai, M., Computational and Approximational Complexity of Combinatorial Problems Related to the Committee Polyhedral Separability of Finite Sets (2008) Pattern Recogn. Image Anal., 18 (2), pp. 237-242; Megiddo, N., Tamir, A., On the Complexity of Locating Linear Facilities in the Plane (1982) Oper. Res. Lett., 1 (5), pp. 194-197; Khachai, M.Y., On Computational and Approximation Complexity of the Problem on Minimal Affine Separating Component (2006) Tavrich. Vestn. Inf. Mat., (1), pp. 34-43; Johnson, D.S., Approximation Algorithms for Combinatorial Problems (1974) J. Comput. Syst. Sci., 9 (3), pp. 256-278; Yablonskii, S.V., (1986) Introduction into Discrete Mathematics, , Moscow: Nauka; Johnson, D.S., Preparata, F.P., The Densest Hemisphere Problem (1978) Theor. Comput. Sci., (6), pp. 93-107; Khachay, M.Y., A Game against Nature Related to Majority Vote Decision Making (2002) Computational Mathematics and Mathematical Physics, 42 (10), pp. 1547-1555 |