On the existence of majority committee / Khachai M.Yu. // Discrete Mathematics and Applications. - 1997. - V. 7, l. 4. - P. 383-397.

ISSN:
09249265
Type:
Article
Abstract:
Basing on the criterion of existence of a q-member committee of an arbitrary system of constraints related to the structure of its set of maximal solvable subsystems, we classify the sets forming a 5-committee in accordance with the corresponding graphs of the maximal solvable subsystems.
Author keywords:
Index keywords:
нет данных
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-9944259987&partnerID=40&md5=c57a4ccca96645595553a5d7ce3579dd
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-9944259987&partnerID=40&md5=c57a4ccca96645595553a5d7ce3579dd
References Mazurov, V.D., (1990) The Committee Approach to Optimization and Classification Problems, , Nauka, Moscow, (in Russian); Mazurov, V.D., On construction of a committee of system of convex inequalities (1967) Cybern., (2), pp. 56-59. , in Russian; Gainanov, D.I., Novokshenov, V.A., Tyagunov, L.I., On graphs induced by unsolvable systems of linear inequalities (1983) Math. Notes, 33, pp. 293-300. , in Russian; Harary, F., (1969) Graph Theory, , Addison-Wesley, Reading, MA
CODEN DMAPE
Language of Original Document English
Abbreviated Source Title Discrete Math Appl
Source Scopus