References |
Rockafellar, R.T., (1970) Convex Analysis, , Princeton Univ. Press, New York; Chernikova, N.V., An algorithm for finding a general formula of nonnegative solutions to systems of linear inequalities (1964) Zh. Vychisl. Mat. Mat. Fiz., 4 (4), pp. 733-737; Chernikova, N.V., An algorithm for finding a general formula of nonnegative solutions to systems of linear inequalities (1965) Zh. Vychisl. Mat. Mat. Fiz., 5 (2), pp. 334-337; Eremin, I.I., Astaf'ev, N.N., (1976) Introduction to the Theory of Linear and Convex Programming [in Russian], , Nauka, Moscow; Eremin, I.I., Mazurov, V.D., (1979) Nonstationary Processes of Mathematical Programming [in Russian], , Nauka, Moscow; Eremin, I.I., Mazurov, V.D., Astaf'ev, N.N., (1983) Improper Problems of Linear and Convex Programming [in Russian], , Nauka, Moscow; Astaf'ev, N.N., (1982) Linear Inequalities and Convexity [in Russian], , Nauka, Moscow; A. V. Fiacco and K. O. Kortanek (eds.), Semiinfinite Programming and Application (An Intern. Sympos. Austin, Texas, September 8–10, 1981), Lecture Notes in Econom. Math. Systems, Vol. 215 (1981); Gustavson, S.A., On the computational solution of a class of generalized moment problems (1970) SIAM Journal on Numerical Analysis, 7 (3), pp. 343-357; Kortanek, K.O., Semiinfinite programming duality and finite elements in plane stress plasticity (1985) Util. Math., 28, pp. 219-232; Charnes, A., Cooper, W.W., Kortanek, K.O., On the theory of semiinfinite programming and generalization of the Kuhn-Tucker saddle-point theorem for arbitrary convex functions (1969) Nav. Res. Log. Q, 10 (1), pp. 41-52; Fan, On infinite systems of linear inequalities (1968) J. Math. Anal. Appl., 21, pp. 475-478; Astaf'ev, N.N., Infinite-dimensional linear programming problems with a duality gap (1984) Dokl. Akad. Nauk SSSR, 275 (2), pp. 1033-1036; Goberna, M.A., Lopez, M.A., Pastor, J., Minkowski system in semiinfinite programming (1981) Appl. Math. Optim., 7 (4), pp. 295-308; Blair, C.E., A note of infinite systems of linear inequalities in Rn (1974) J. Math. Anal. Appl., 48 (1), pp. 150-154; Korney, D.F., Duality gaps in semiinfinite linear programming — An application problem (1981) Math. Program., 20 (2), pp. 129-143; N. N. Astaf'ev, On Regularization of Semiinfinite Linear Programming, Abstr. 1. 12th IFIP Conf. on System Modeling and Optimization, Budapest, 2–6 (1985); Duffin, R.J., Convex analysis treated by linear programming (1973) Math. Program., 4 (2), pp. 125-143; Zlobec, S., Ben-Israel, A., Duality in convex programming: a linearization approach (1979) Mathematische Operationsforschung und Statistik. Series Optimization, 10 (2), pp. 171-178; Mazurov, V.D., (1982) Mathematical Methods of Pattern Recognition [in Russian], , Ural Univ. Press, Sverdlovsk; Mazurov, V.D., Kazantsev, V.S., Sachkov, N.O., Committees in decision making (1984) Kibernetika, 1, pp. 90-96; Beletskii, N.G., Models of Committee Algorithms of Pattern Recognition [in Russian] (1984) Math. Methods in Planning Industrial Production, pp. 91-95. , UNC AN SSR, Sverdlovsk; Krivonogov, A.I., Mazurov, V.D., (1985) Committee Method for Optimization Problems and Diagnostics of Technical and Economic Systems, , Physicotechnical Inst., Ural Science Center, Academy of Sciences of the USSR, Sverdlovsk; Mazurov, V.D., (1986) Linear Optimization and Modeling [in Russian], , Ural Univ. Press, Sverdlovsk; Mazurov, V.D., Smirnov, A.I., (1986) On an Algebraic Approach to Constructing Objects from Their Image. Automat. Systems of Image Processing [in Russian], p. 154. , Nauka, Moscow |