Quantitative phase separation in multiferroic Bi0.88Sm0.12FeO3 ceramics via piezoresponse force microscopy / Alikin D.O., Turygin A.P., Walker J., Rojac T., Shvartsman V.V., Shur V.Y., Kholkin A.L. // Journal of Applied Physics. - 2015. - V. 118, l. 7.

ISSN:
00218979
Type:
Article
Abstract:
BiFeO3 (BFO) is a classical multiferroic material with both ferroelectric and magnetic ordering at room temperature. Doping of this material with rare-earth oxides was found to be an efficient way to enhance the otherwise low piezoelectric response of unmodified BFO ceramics. In this work, we studied two types of bulk Sm-modified BFO ceramics with compositions close to the morphotropic phase boundary (MPB) prepared by different solid-state processing methods. In both samples, coexistence of polar R3c and antipolar Pbam phases was detected by conventional X-ray diffraction (XRD); the non-polar Pnma or Pbnm phase also has potential to be present due to the compositional proximity to the polar-to-non-polar phase boundary. Two approaches to separate the phases based on the piezoresponse force microscopy measurements have been proposed. The obtained fractions of the polar and non-polar/anti-polar phases were close to those determined by quantitative XRD analysis. The results thus reveal a useful method for quantitative determination of the phase composition in multi-phase ceramic systems, including the technologically most important MPB systems. © 2015 AIP Publishing LLC.
Author keywords:
Index keywords:
Phase separation; Scanning probe microscopy; X ray diffraction; Morphotropic phase boundaries; Multiferroic materials; Piezoelectric response; Piezoresponse force microscopy; Quantitative determinatio
DOI:
10.1063/1.4927812
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84939839938&doi=10.1063%2f1.4927812&partnerID=40&md5=8782177bfde4fc8dc46e238756eb525a
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 072004
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84939839938&doi=10.1063%2f1.4927812&partnerID=40&md5=8782177bfde4fc8dc46e238756eb525a
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Electronic Ceramics Department, Jozef Stefan Institute, Ljubljana, Slovenia; Institute for Materials Science, University of Duisburg-Essen, Essen, Germany; Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
References Jaffe, B., Cook, W.R., Jaffe, H.L., (1971) Piezoelectric Ceramics, , (Academic Press, New York); Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.-M., Granzow, T., Damjanovic, D., (2009) J. Am. Ceram. Soc., 92, p. 1153; Aksel, E., Jones, J.L., (2010) Sensors, 10, p. 1935; Shrout, T.R., Zhang, S.J., (2007) J. Electroceram., 19, p. 185; Catalan, G., Scott, J.F., (2009) Adv. Mater., 21, p. 2463; (2003), European Union, in 2002/96/EC; (2003), European Union, in Directive 2002/95/EC; Fujino, S., Murakami, M., Anbusathaiah, V., Lim, S.-H., Nagarajan, V., Fennie, C.J., Wuttig, M., Takeuchi, I., (2008) Appl. Phys. Lett., 92; Troyanchuk, I.O., Karpinsky, D.V., Bushinsky, M.V., Khomchenko, V.A., Kakazei, G.N., Araujo, J.P., Tovar, M., Kholkin, A.L., (2011) Phys. Rev. B, 83; Karpinsky, D.V., Troyanchuk, I.O., Sikolenko, V., Efimov, V., Kholkin, A.L., (2013) J. Appl. Phys., 113; Karpinsky, D.V., Troyanchuk, I.O., Tovar, M., Sikolenko, V., Efimov, V., Kholkin, A.L., (2013) J. Alloys Compd., 555, p. 101; Khomchenko, V.A., Paixão, J.A., Shvartsman, V.V., Borisov, P., Kleemann, W., Karpinsky, D.V., Kholkin, A.L., (2010) Scr. Mater., 62, p. 238; Kan, D., Pálová, L., Anbusathaiah, V., Cheng, C.J., Fujino, S., Nagarajan, V., Rabe, K.M., Takeuchi, I., (2010) Adv. Funct. Mater., 20, p. 1108; Troyanchuk, I.O., Karpinsky, D.V., Bushinsky, M.V., Mantytskaya, O.S., Tereshko, N.V., Shut, V.N., (2011) J. Am. Ceram. Soc., 94, p. 4502; Karimi, S., Reaney, I.M., Han, Y., Pokorny, J., Sterianou, I., (2009) J. Mater. Sci., 44, pp. 5102-5112; Srivastava, A., Singh, H.K., Awana, V.P.S., Srivastava, O.N., (2013) J. Alloys Compd., 552, pp. 336-344; Cheng, C.-J., Borisevich, A.Y., Kan, D., Takeuchi, I., Nagarajan, V., (2010) Chem. Mater., 22, pp. 2588-2596; Walker, J., Bryant, P., Kurusingal, V., Sorrell, C., Kuscer, D., Drazic, G., Bencan, A., Rojac, T., (2015) Acta Mater., 83, p. 149; Cheng, C.-J., Kan, D., Lim, S.-H., McKenzie, W.R., Munroe, P.R., Salamanca-Riba, L.G., Withers, R.L., Nagarajan, V., (2009) Phys. Rev. B, 80; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain, H., Gruverman, A., (2006) Microsc. Microanal., 12, p. 206; Soergel, E., (2011) J. Phys. D: Appl. Phys., 44; Wu, A., Vilarinho, P.M., Shvartsman, V.V., Suchaneck, G., Kholkin, A.L., (2005) Nanotechnology, 16, p. 2587; Shvartsman, V.V., Kholkin, A.L., (2010) J. Appl. Phys., 108; Shvartsman, V.V., Kholkin, A.L., (2004) Phys. Rev. B, 69; Johann, F., Ying, Y.J., Jungk, T., Hoffmann, A., Sones, C.L., Eason, R.W., Mailis, S., Soergel, E., (2009) Appl. Phys. Lett., 94; Rietveld, H., (1969) J. Appl. Crystallogr., 2, p. 65; Reaney, I.M., Woodward, D.I., Randall, C.A., (2011) J. Am. Ceram. Soc., 94, p. 2242
Correspondence Address Alikin, D.O.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation
Publisher American Institute of Physics Inc.
CODEN JAPIA
Language of Original Document English
Abbreviated Source Title J Appl Phys
Source Scopus