Nano- and micro-domain engineering in normal and relaxor ferroelectrics / Shur V.Y. // Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications. - 2008. - V. , l. . - P. 622-669.

ISSN:
нет данных
Type:
Book Chapter
Abstract:
[No abstract available]
Author keywords:
Index keywords:
нет данных
DOI:
10.1533/9781845694005.5.622
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941760313&doi=10.1533%2f9781845694005.5.622&partnerID=40&md5=05dee9981433d6e262cf0989448dbfb2
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941760313&doi=10.1533%2f9781845694005.5.622&partnerID=40&md5=05dee9981433d6e262cf0989448dbfb2
Affiliations Ferroelectric Laboratory, Ural State University, Lenin Ave, 51, Ekaterinburg, Russian Federation
References Abplanalp, M., Baroshava, D., Bridenbaugh, P., Erhart, J., Fousek, J., Guenter, P., Nosek, J., Shulc, M., Scanning force microscopy of domain structures in Pb(Zn1/3Nb2/3)O3-8% PbTiO3 and Pb(Mg1/3Nb2/3)O3-29% PbTiO3 (2002) J Appl Phys, 91 (6), pp. 3797-3805; Alekseeva, Z.E., Vorobieva, L.B., Yevlanova, N.F., Selective chemical etching of lithium niobate doped with iron (1986) Inorg Mats, 22, pp. 1384-1387; Armstrong, J.A., Bloembergen, N., Ducuing, J., Perhsan, P.S., Interactions between light waves in a nonlinear dielectric (1962) Phys Rev, 127 (6), pp. 1918-1939; Avrami, M., Kinetics of phase change. 1. General theory (1939) J Chem Phys, 7, pp. 1103-1112; Bai, F., Li, J.F., Viehland, D., Domain hierarchy in annealed (001)-oriented Pb(Mg1/3Nb2/3)O3-x%PbTiO3 single crystals (2004) Appl Phys Lett, 85, pp. 2313-2315; Batchko, R.G., Shur, V., Fejer, M.M., Byer, R.L., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl Phys Lett, 75 (12), pp. 1673-1675; Batchko, R., Miller, G., Byer, R., Shur, V., Fejer, M., (2003) Backswitch poling method for domain patterning of ferroelectric materials, , United States Patent No. 6,542,285 B1, April 1; Bdikin, I.K., Shvartsman, V.V., Kholkin, A.L., Nanoscale domains and local piezoelectric hysteresis in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals (2003) Appl Phys Lett, 83 (20), pp. 4232-4234; Blattner, H., Kanzig, W., Merz, W., Sutter, H., Domain structure of barium titanate crystals (1948) Helv Phys Acta, 21, pp. 207-209; Blinc, R., Laguta, V.V., Zalar, B., Banys, J., Polar nanoclusters in relaxors (2006) J Mat Sci, 41 (1), pp. 27-30; Bokov, A.A., Ye, Z.-G., Recent progress in relaxor ferroelectrics with perovskite structure (2006) J Mat Sci, 41 (1), pp. 31-52; Bokov, A.A., Ye, Z.-G., Double freezing of dielectric response in relaxor Pb(Mg1/3Nb2/3)O3 crystals (2006) Phys Rev B, 74, p. 132102; Burfoot, J.C., Taylor, G.W., (1979) Polar Dielectrics and their Applications, , Macmillan Press Ltd., London; Bursill, L.A., Lin, P.J., Electron microscopic studies of ferroelectric crystals (1986) Ferroelectrics, 70, pp. 191-203; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J Nonl Opt Phys &Mats, 6, pp. 549-592; Cameron, D.P., Domain orientation in barium titanate single crystals (1957) IBM J Res Developm, 1, pp. 2-6; Cross, L.E., Relaxor ferroelectrics: an overview (1994) Ferroelectrics, 151, pp. 305-320; Dai, X., Xu, Z., Viehland, D., The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate (1994) Phil Mag B, 70, pp. 33-48; Drougard, M.E., Landauer, R., On the dependence of the switching time of barium titanate crystals on their thickness (1959) J Appl Phys, 30, pp. 1663-1668; Egami, T., Teslic, S., Dmowski, W., Viehland, D., Vakhrushev, S., Local atomic structure of relaxor ferroelectric solids determined by pulsed neutron and X-ray scattering (1997) Ferroelectrics, 199, pp. 103-113; Fatuzzo, E., Merz, W.J., (1967) Ferroelectricity, , North-Holland Publishing Company, Amsterdam; Feder, J., (1988) Fractals, , Plenum Press, New York; Feng, D., Ming, N.B., Hong, J.F., Yang, Y.S., Zhu, J.S., Yang, Z., Wang, Y.N., Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains (1980) Appl Phys Lett, 37, pp. 607-609; Flippen, R.B., Domain wall dynamics in ferroelectric/ferroelastic molybdate (1975) J Appl Phys, 46, pp. 1068-1071; Fridkin, V.M., (1980) Ferroelectrics Semiconductors, , Consult. Bureau, New York and London; Furukawa, Y., Kitamura, K., Takekawa, S., Niwa, K., Hatano, H., Stoichiometric Mg: LiNbO3 as an effective material for nonlinear optics (1998) Opt Lett, 23, pp. 1892-1894; Gopalan, V., Mitchell, T., Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals (1998) J Appl Phys, 83, pp. 941-954; Gopalan, V., Mitchell, T., In-situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy (1999) J Appl Phys, 85, pp. 2304-2311; Gopalan, V., Jia, Q., Mitchell, T., In situ video observation of 180° domain kinetics in congruent LiNbO3 (1999) Appl Phys Lett, 75, pp. 2482-2484; Hayashi, M., Kinetics of domain wall motion in ferroelectric switching. Pt. 1. General formulation (1972) J Phys Soc Jpn, 33, pp. 616-628; Hooton, J.A., Merz, W.J., Etch patterns and ferroelectric domains in BaTiO3 single crystals (1955) Phys Rev, 98 (2), pp. 409-413; Huang, L., Hui, D., Bamford, D.J., Field, S.J., Mnushkina, I., Myers, L.E., Kayser, J.V., Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method (2001) Appl Phys B, 72, pp. 301-306; Iona, F., Shirane, G., (1962) Ferroelectric Crystals, , Pergamon, London; Ishibashi, Y., Takagi, Y., Note on ferroelectric domain switching (1971) J Phys Soc Jpn, 31 (2), pp. 506-510; Isupov, V.A., Physical phenomena in complex ferroelectric perovskites (1983) Izv Akad Nauk SSSR, Ser Fiz, 47 (3), pp. 559-565; Janovec, V., Anti-parallel ferroelectric domain in surface space-charge layers of BaTiO3 (1959) Czechosl J Phys, 9, pp. 468-480; Kitamura, K., Furukawa, Y., Niwa, K., Gopalan, V., Mitchell, T., Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3 (1998) Appl Phys Lett, 73, pp. 3073-3075; Kleemann, W., Lindner, R., Dynamic behavior of polar nanodomains in PbMg1/3 Nb2/3O3 (1997) Ferroelectrics, 199, pp. 1-10; Kobayashi, J., Yamada, N., Nakamura, T., Origin of the visibility of the antiparallel 180° domains in barium titanate (1963) Phys Rev Lett, 11, pp. 410-415; Kolmogorov, A.N., The statistical theory of metal crystallization (1937) Izv Akad Nauk USSR, Ser Math, 3, pp. 355-359; Kumada, A., Domain switching in Gd2(MoO4)3 (1969) Phys Lett, 30 A, pp. 186-187; Lambeck, P.V., Jonker, G.H., The nature of domain stabilization in ferroelectric perovskites (1986) J Phys Chem Solids, 47, pp. 453-461; Lehnen, P., Kleemann, W., Wöike, T., Pankrath, R., Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61-xBa0.39Nb2O6: Cex3+ (2001) Phys Rev B, 64, p. 224109; Lifshitz, E.M., Pitaevskii, L.P., Landau, L.D., (1985) Electrodynamics of Continuous Media, Theoretical Physics, 8. , Elsevier Science, New York, 2nd ed; Lin, P.J., Bursill, L.A., High-resolution study of ferroelectric domain boundaries in lithium tantalate (1982) Phil. Magazine A, 45 (6), pp. 911-928; Lines, M.E., Glass, A.M., (1977) Principles and Application of Ferroelectrics and Related Materials, , Clarendon Press, Oxford; Little, E.A., Dynamic behavior of domain walls in barium titanate (1955) Phys Rev, 98, pp. 978-984; Lobov, A.I., Shur, V., Baturin, I.S., Shishkin, E.I., Kuznetsov, D.K., Shur, A.G., Dolbilov, M.A., Gallo, K., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3 (2006) Ferroelectrics, 341, pp. 109-116; Malozemoff, A.P., Slonczewski, J.S., (1979) Magnetic Domain Walls in Bubble Materials, , Academic Press, New York; El Marssi, M., Farhi, R., Dellis, J.-L., Glinchuk, M.D., Seguin, L., Viehland, D., Ferroelectric and glassy states in La-modified lead zirconate titanate ceramics: a general picture (1998) J Appl Phys, 83, pp. 5371-5380; Matthias, B., Hippel, A., Domain structure and dielectric response of barium titanate single crystals (1948) Phys Rev, 73 (11), pp. 1378-1384; Merz, W.J., Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals (1954) Phys Rev, 95, pp. 690-698; Merz, W.J., Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness (1956) J Appl Phys, 27 (8), pp. 938-943; Miller, R.C., On the origin of Barkhausen pulses in BaTiO3 (1960) J Phys Chem Solids, 17, pp. 93-100; Miller, R.C., Optical harmonic generation in single crystal BaTiO3 (1964) Phys Rev, 134 (5 PART. A), pp. 1313-1319; Miller, R.C., Savage, A., Direct observation of antiparallel domains during polarization reversal in single crystal barium titanate (1959) Phys Rev Lett, 2, pp. 294-296; Miller, R.C., Weinreich, G., Mechanism for the sidewise motion of 180° domain walls in barium titanate (1960) Phys Rev, 117, pp. 1460-1466; Ming, N.B., Hong, J.F., Feng, D., The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals (1982) J Mater Sci, 17 (6), pp. 1663-1670; Miyazawa, S., Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide (1979) J Appl Phys, 50, pp. 4599-4603; Mizuuchi, K., Yamamoto, K., Characteristics of periodically domain-inverted LiTaO3 (1992) J Appl Phys, 72 (11), pp. 5061-5069; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J Opt Soc Am B, 12 (11), pp. 2102-2116; Nakamura, K., Tourlog, A., Single-domain surface layers formed by heat treatment of proton-exchanged multidomain LiTaO3 crystals (1993) Appl Phys Lett, 63, pp. 2065-2066; Newnham, R.E., Cross, L.E., Ambidextrous crystals (1974) Endeavour, 33, pp. 18-22; Newnham, R.E., Miller, C.S., Cross, L.E., Cline, T.W., Tailored domain patterns in piezoelectric crystals (1975) Phys Stat Sol (A), 32, pp. 69-78; Niwa, K., Furukawa, Y., Takekawa, S., Kitamura, K., Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material (2000) J Crystal Growth, 208, pp. 493-500; O'dell, T.H., (1981) Ferromagnetodynamics, , Macmillan Press Ltd., London; Ohnishi, N., Iizuka, T., Etching study of microdomains in LiNbO3 single crystals (1975) J Appl Phys, 46 (3), pp. 1063-1067; Prokhorov, A.M., Kuzminov, Y.S., (1990) Physics and Chemistry of Crystalline Lithium Niobate, , Adam Hilger, Bristol; Rosenman, G., Skliar, A., Arie, A., Ferroelectric domain engineering for quasi-phasematched nonlinear optical devices (1999) Ferroelectrics Review, 1, pp. 263-326; Savage, A., Miller, R.C., Temperature dependence of the velocity of sidewise 180° domain-wall motion in BaTiO3 (1960) J Appl Phys, 31 (9), pp. 1546-1549; Ya Shur, V., Fast polarization reversal process: evolution of ferroelectric domain structure in thin films (1996) Ferroelectric Thin Films: Synthesis and Basic Properties, pp. 153-192. , Gordon and Breach, New York, C.A. Paz De Araujo, J.F. Scott, G.W. Taylor (Eds.); Shur, V., Rumyantsev, E.L., Kinetics of ferroelectric domain structure: retardation effects (1997) Ferroelectrics, 191, pp. 319-333; Shur, V., Kinetics of polarization reversal in normal and relaxor ferroelectrics: relaxation effects (1998) Phase Trans, 65, pp. 49-72; Shur, V., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , Wiley-VCH, Weinheim, J.W.P. Schmelzer (Ed.); Shur, V., Kinetics of ferroelectric domains: application of general approach to LiNbO3 and LiTaO3 (2006) J Mat Sci, 41 (1), pp. 199-210; Shur, V., Popov, Y., Korovina, N.V., Bound internal field in lead germinate (1984) Sov Phys Solid State, 26, pp. 471-474; Shur, V., Letuchev, V.V., Rumyantsev, E.L., Field dependence of the polarization switching parameters and shape of domains in lead germanate (1984) Sov Phys Solid State, 26, pp. 1521-1522; Shur, V., Letuchev, V.V., Rumyantsev, E.L., Ovechkina, I.V., Triangular domains in lead germanate (1985) Sov Phys Solid State, 27, pp. 959-960; Shur, V., Gruverman, A.L., Letuchev, V.V., Rumyantsev, E.L., Subbotin, A.L., Domain structure of lead germanate (1989) Ferroelectrics, 98, pp. 29-49; Shur, V., Gruverman, A.L., Kuminov, V.P., Tonkachyova, N.A., Dynamics of plane domain walls in lead germanate and gadolinium molybdate (1990) Ferroelectrics, 111, pp. 197-206; Shur, V., Rumyantsev, E.L., Makarov, S.D., Kinetics of phase transformations in real finite systems: application to switching in ferroelectrics (1998) J Appl Phys, 84, pp. 445-451; Shur, V., Rumyantsev, E.L., Makarov, S.A., Kozhevnikov, V.L., Nikolaeva, E.V., Shishkin, E.I., How to learn the domain kinetics from the switching current data (1999) Int Ferroelectrics, 27, pp. 179-194; Shur, V., Lomakin, G.G., Kuminov, V.P., Pelegov, D.V., Beloglazov, S.S., Slovikovski, S.V., Sorkin, I.L., Fractal-cluster kinetics in phase transformations in relaxor ceramic PLZT (1999) Phys Solid State, 41, pp. 453-456; Shur, V., Rumyantsev, E.L., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Domain kinetics during periodic domain patterning in lithium niobate (1999) Phys Solid State, 41, pp. 1681-1687; Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl Phys Lett, 76 (2), pp. 143-145; Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl Phys Lett, 77 (22), pp. 3636-3638; Shur, V., Rumyantsev, E., Nikolaeva, E., Shishkin, E., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate (2000) SPIE Proceedings on Smart Structures and Materials, 3992, pp. 143-154; Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., Formation of self-organized nanoscale domain patterns during spontaneous backswitching in lithium niobate (2001) Ferroelectrics, 253, pp. 105-114; Shur, V., Rumyantsev, E.L., Pelegov, D.V., Kozhevnikov, V.L., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Ivanov, R.K., Barkhausen jumps during domain wall motion in ferroelectrics (2002) Ferroelectrics, 267, pp. 347-353; Shur, V., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., Domain shape in congruent and stoichiometric lithium tantalate (2002) Ferroelectrics, 269, pp. 195-200; Shur, V., Nikolaeva, E.V., Shishkin, E.I., Ferroelectric nanodomain structures in LiNbO3 and LiTaO3: investigation by scanning probe microscopy (2003) Phys Low-Dim Str, 3 (4), pp. 139-148; Shur, V., Lomakin, G.G., Rumyantsev, E.L., Beloglazov, S.S., Pelegov, D.V., Sternberg, A., Krumins, A., Fractal clusters in relaxor PLZT ceramics: evolution in electric field (2004) Ferroelectrics, 299, pp. 75-81; Shur, V., Shishkin, E., Rumyantsev, E., Nikolaeva, E., Shur, A., Batchko, R., Fejer, M., Kitamura, K., Self-organization in LiNbO3 and LiTaO3: formation of micro- and nanoscale domain patterns (2004) Ferroelectrics, 304, pp. 111-116; Shur, V., Lomakin, G.G., Rumyantsev, E.L., Yakutova, O.V., Pelegov, D.V., Sternberg, A., Kosec, M., Polarization reversal in heterophase nanostructures: relaxor PLZT ceramics (2005) Phys Solid State, 47 (7), pp. 1340-1345; Shur, V., Rumyantsev, E.L., Lomakin, G.G., Yakutova, O.V., Pelegov, D.V., Sternberg, A., Kosec, M., Field induced evolution of nanoscale structures in relaxor PLZT ceramics (2005) Ferroelectrics, 316, pp. 23-29; Shur, V., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl Phys Lett, 87 (2), p. 022905; Ya, S.V., Shishkin, E.I., Kuznetsov, D.K., Lobov, A.I., Dolbilov, M.A., Tascu, S., Baldi, P., Gallo, K., (2006) Modification of the domain kinetics in congruent lithium niobate by proton exchanged surface layers, p. 224; Shvartsman, V.V., Kholkin, A.L., Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy (2004) Phys Rev B, 69, p. 014102; Shvartsman, V.V., Kholkin, A.L., Orlova, A., Kiselev, D., Bogomolov, A.A., Sternberg, A., Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics (2005) Appl Phys Lett, 86 (20), p. 202907; Soergel, E., Visualization of ferroelectric in bulk single crystals (2005) Appl Phys B, 81, pp. 729-752; Sones, C.L., Mailis, S., Brocklesby, W.S., Eason, R.W., Owen, J.R., Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations (2002) J Mater Chem, 12 (2), pp. 295-298; Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features (2001) J Appl Phys, 90, pp. 1387-1402; Terabe, K., Takekawa, S., Nakamura, M., Kitamura, K., Higuchi, S., Gotoh, Y., Gruverman, A., Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope (2002) Appl Phys Lett, 81, pp. 2044-2046; Valdivia, C.E., Sones, C.L., Scott, J.G., Mailis, S., Eason, R.W., Scrymgeour, D.A., Gopalan, V., Clark, I., Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination (2005) Appl Phys Lett, 86, p. 022906; WebjÖRn, J., Pruneri, V., Russell, P.S.J., Barr, J.R.M., Hanna, D.C., Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes (1994) Electron Lett, 30 (11), pp. 894-895; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Appl Phys Lett, 62, pp. 435-436; Yin, Q.R., Li, G.R., Zeng, H.R., Liu, X.X., Heiderhoff, R., Balk, L.J., Ferroelectric domain structures in (Pb, La)(Zr, Ti)O3 ceramics (2004) Appl Phys A, 78 (5), pp. 699-702; Zhu, S.-N., Zhu, Y.-Y., Zhang, Z.-Y., Shu, H., Wang, H.-F., Hong, J.-F., Ge, C.-Z., Ming, N.-B., LiTaO3 crystal periodically poled by applying an external pulsed field (1995) J Appl Phys, 77 (10), pp. 5481-5483; Zhu, Y.-Y., Zhu, S.-N., Hong, J.-F., Ming, N.-B., Domain inversion in LiNbO3 by proton exchange and quick heat treatment (1994) Appl Phys Lett, 65, pp. 558-560
Correspondence Address Shur, V.Y.; Ferroelectric Laboratory, Ural State University, Lenin Ave, 51, Russian Federation
Publisher Elsevier Ltd
ISBN 9781845694005; 9781845691868
Language of Original Document English
Abbreviated Source Title Handb. of Adv. Dielectr., Piezoelectric and Ferroelectr. Mater.: Synth., Prop. and Appl.
Source Scopus