References |
Abplanalp, M., Baroshava, D., Bridenbaugh, P., Erhart, J., Fousek, J., Guenter, P., Nosek, J., Shulc, M., Scanning force microscopy of domain structures in Pb(Zn1/3Nb2/3)O3-8% PbTiO3 and Pb(Mg1/3Nb2/3)O3-29% PbTiO3 (2002) J Appl Phys, 91 (6), pp. 3797-3805; Alekseeva, Z.E., Vorobieva, L.B., Yevlanova, N.F., Selective chemical etching of lithium niobate doped with iron (1986) Inorg Mats, 22, pp. 1384-1387; Armstrong, J.A., Bloembergen, N., Ducuing, J., Perhsan, P.S., Interactions between light waves in a nonlinear dielectric (1962) Phys Rev, 127 (6), pp. 1918-1939; Avrami, M., Kinetics of phase change. 1. General theory (1939) J Chem Phys, 7, pp. 1103-1112; Bai, F., Li, J.F., Viehland, D., Domain hierarchy in annealed (001)-oriented Pb(Mg1/3Nb2/3)O3-x%PbTiO3 single crystals (2004) Appl Phys Lett, 85, pp. 2313-2315; Batchko, R.G., Shur, V., Fejer, M.M., Byer, R.L., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl Phys Lett, 75 (12), pp. 1673-1675; Batchko, R., Miller, G., Byer, R., Shur, V., Fejer, M., (2003) Backswitch poling method for domain patterning of ferroelectric materials, , United States Patent No. 6,542,285 B1, April 1; Bdikin, I.K., Shvartsman, V.V., Kholkin, A.L., Nanoscale domains and local piezoelectric hysteresis in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals (2003) Appl Phys Lett, 83 (20), pp. 4232-4234; Blattner, H., Kanzig, W., Merz, W., Sutter, H., Domain structure of barium titanate crystals (1948) Helv Phys Acta, 21, pp. 207-209; Blinc, R., Laguta, V.V., Zalar, B., Banys, J., Polar nanoclusters in relaxors (2006) J Mat Sci, 41 (1), pp. 27-30; Bokov, A.A., Ye, Z.-G., Recent progress in relaxor ferroelectrics with perovskite structure (2006) J Mat Sci, 41 (1), pp. 31-52; Bokov, A.A., Ye, Z.-G., Double freezing of dielectric response in relaxor Pb(Mg1/3Nb2/3)O3 crystals (2006) Phys Rev B, 74, p. 132102; Burfoot, J.C., Taylor, G.W., (1979) Polar Dielectrics and their Applications, , Macmillan Press Ltd., London; Bursill, L.A., Lin, P.J., Electron microscopic studies of ferroelectric crystals (1986) Ferroelectrics, 70, pp. 191-203; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J Nonl Opt Phys &Mats, 6, pp. 549-592; Cameron, D.P., Domain orientation in barium titanate single crystals (1957) IBM J Res Developm, 1, pp. 2-6; Cross, L.E., Relaxor ferroelectrics: an overview (1994) Ferroelectrics, 151, pp. 305-320; Dai, X., Xu, Z., Viehland, D., The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate (1994) Phil Mag B, 70, pp. 33-48; Drougard, M.E., Landauer, R., On the dependence of the switching time of barium titanate crystals on their thickness (1959) J Appl Phys, 30, pp. 1663-1668; Egami, T., Teslic, S., Dmowski, W., Viehland, D., Vakhrushev, S., Local atomic structure of relaxor ferroelectric solids determined by pulsed neutron and X-ray scattering (1997) Ferroelectrics, 199, pp. 103-113; Fatuzzo, E., Merz, W.J., (1967) Ferroelectricity, , North-Holland Publishing Company, Amsterdam; Feder, J., (1988) Fractals, , Plenum Press, New York; Feng, D., Ming, N.B., Hong, J.F., Yang, Y.S., Zhu, J.S., Yang, Z., Wang, Y.N., Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains (1980) Appl Phys Lett, 37, pp. 607-609; Flippen, R.B., Domain wall dynamics in ferroelectric/ferroelastic molybdate (1975) J Appl Phys, 46, pp. 1068-1071; Fridkin, V.M., (1980) Ferroelectrics Semiconductors, , Consult. Bureau, New York and London; Furukawa, Y., Kitamura, K., Takekawa, S., Niwa, K., Hatano, H., Stoichiometric Mg: LiNbO3 as an effective material for nonlinear optics (1998) Opt Lett, 23, pp. 1892-1894; Gopalan, V., Mitchell, T., Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals (1998) J Appl Phys, 83, pp. 941-954; Gopalan, V., Mitchell, T., In-situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy (1999) J Appl Phys, 85, pp. 2304-2311; Gopalan, V., Jia, Q., Mitchell, T., In situ video observation of 180° domain kinetics in congruent LiNbO3 (1999) Appl Phys Lett, 75, pp. 2482-2484; Hayashi, M., Kinetics of domain wall motion in ferroelectric switching. Pt. 1. General formulation (1972) J Phys Soc Jpn, 33, pp. 616-628; Hooton, J.A., Merz, W.J., Etch patterns and ferroelectric domains in BaTiO3 single crystals (1955) Phys Rev, 98 (2), pp. 409-413; Huang, L., Hui, D., Bamford, D.J., Field, S.J., Mnushkina, I., Myers, L.E., Kayser, J.V., Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method (2001) Appl Phys B, 72, pp. 301-306; Iona, F., Shirane, G., (1962) Ferroelectric Crystals, , Pergamon, London; Ishibashi, Y., Takagi, Y., Note on ferroelectric domain switching (1971) J Phys Soc Jpn, 31 (2), pp. 506-510; Isupov, V.A., Physical phenomena in complex ferroelectric perovskites (1983) Izv Akad Nauk SSSR, Ser Fiz, 47 (3), pp. 559-565; Janovec, V., Anti-parallel ferroelectric domain in surface space-charge layers of BaTiO3 (1959) Czechosl J Phys, 9, pp. 468-480; Kitamura, K., Furukawa, Y., Niwa, K., Gopalan, V., Mitchell, T., Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3 (1998) Appl Phys Lett, 73, pp. 3073-3075; Kleemann, W., Lindner, R., Dynamic behavior of polar nanodomains in PbMg1/3 Nb2/3O3 (1997) Ferroelectrics, 199, pp. 1-10; Kobayashi, J., Yamada, N., Nakamura, T., Origin of the visibility of the antiparallel 180° domains in barium titanate (1963) Phys Rev Lett, 11, pp. 410-415; Kolmogorov, A.N., The statistical theory of metal crystallization (1937) Izv Akad Nauk USSR, Ser Math, 3, pp. 355-359; Kumada, A., Domain switching in Gd2(MoO4)3 (1969) Phys Lett, 30 A, pp. 186-187; Lambeck, P.V., Jonker, G.H., The nature of domain stabilization in ferroelectric perovskites (1986) J Phys Chem Solids, 47, pp. 453-461; Lehnen, P., Kleemann, W., Wöike, T., Pankrath, R., Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61-xBa0.39Nb2O6: Cex3+ (2001) Phys Rev B, 64, p. 224109; Lifshitz, E.M., Pitaevskii, L.P., Landau, L.D., (1985) Electrodynamics of Continuous Media, Theoretical Physics, 8. , Elsevier Science, New York, 2nd ed; Lin, P.J., Bursill, L.A., High-resolution study of ferroelectric domain boundaries in lithium tantalate (1982) Phil. Magazine A, 45 (6), pp. 911-928; Lines, M.E., Glass, A.M., (1977) Principles and Application of Ferroelectrics and Related Materials, , Clarendon Press, Oxford; Little, E.A., Dynamic behavior of domain walls in barium titanate (1955) Phys Rev, 98, pp. 978-984; Lobov, A.I., Shur, V., Baturin, I.S., Shishkin, E.I., Kuznetsov, D.K., Shur, A.G., Dolbilov, M.A., Gallo, K., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3 (2006) Ferroelectrics, 341, pp. 109-116; Malozemoff, A.P., Slonczewski, J.S., (1979) Magnetic Domain Walls in Bubble Materials, , Academic Press, New York; El Marssi, M., Farhi, R., Dellis, J.-L., Glinchuk, M.D., Seguin, L., Viehland, D., Ferroelectric and glassy states in La-modified lead zirconate titanate ceramics: a general picture (1998) J Appl Phys, 83, pp. 5371-5380; Matthias, B., Hippel, A., Domain structure and dielectric response of barium titanate single crystals (1948) Phys Rev, 73 (11), pp. 1378-1384; Merz, W.J., Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals (1954) Phys Rev, 95, pp. 690-698; Merz, W.J., Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness (1956) J Appl Phys, 27 (8), pp. 938-943; Miller, R.C., On the origin of Barkhausen pulses in BaTiO3 (1960) J Phys Chem Solids, 17, pp. 93-100; Miller, R.C., Optical harmonic generation in single crystal BaTiO3 (1964) Phys Rev, 134 (5 PART. A), pp. 1313-1319; Miller, R.C., Savage, A., Direct observation of antiparallel domains during polarization reversal in single crystal barium titanate (1959) Phys Rev Lett, 2, pp. 294-296; Miller, R.C., Weinreich, G., Mechanism for the sidewise motion of 180° domain walls in barium titanate (1960) Phys Rev, 117, pp. 1460-1466; Ming, N.B., Hong, J.F., Feng, D., The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals (1982) J Mater Sci, 17 (6), pp. 1663-1670; Miyazawa, S., Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide (1979) J Appl Phys, 50, pp. 4599-4603; Mizuuchi, K., Yamamoto, K., Characteristics of periodically domain-inverted LiTaO3 (1992) J Appl Phys, 72 (11), pp. 5061-5069; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J Opt Soc Am B, 12 (11), pp. 2102-2116; Nakamura, K., Tourlog, A., Single-domain surface layers formed by heat treatment of proton-exchanged multidomain LiTaO3 crystals (1993) Appl Phys Lett, 63, pp. 2065-2066; Newnham, R.E., Cross, L.E., Ambidextrous crystals (1974) Endeavour, 33, pp. 18-22; Newnham, R.E., Miller, C.S., Cross, L.E., Cline, T.W., Tailored domain patterns in piezoelectric crystals (1975) Phys Stat Sol (A), 32, pp. 69-78; Niwa, K., Furukawa, Y., Takekawa, S., Kitamura, K., Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material (2000) J Crystal Growth, 208, pp. 493-500; O'dell, T.H., (1981) Ferromagnetodynamics, , Macmillan Press Ltd., London; Ohnishi, N., Iizuka, T., Etching study of microdomains in LiNbO3 single crystals (1975) J Appl Phys, 46 (3), pp. 1063-1067; Prokhorov, A.M., Kuzminov, Y.S., (1990) Physics and Chemistry of Crystalline Lithium Niobate, , Adam Hilger, Bristol; Rosenman, G., Skliar, A., Arie, A., Ferroelectric domain engineering for quasi-phasematched nonlinear optical devices (1999) Ferroelectrics Review, 1, pp. 263-326; Savage, A., Miller, R.C., Temperature dependence of the velocity of sidewise 180° domain-wall motion in BaTiO3 (1960) J Appl Phys, 31 (9), pp. 1546-1549; Ya Shur, V., Fast polarization reversal process: evolution of ferroelectric domain structure in thin films (1996) Ferroelectric Thin Films: Synthesis and Basic Properties, pp. 153-192. , Gordon and Breach, New York, C.A. Paz De Araujo, J.F. Scott, G.W. Taylor (Eds.); Shur, V., Rumyantsev, E.L., Kinetics of ferroelectric domain structure: retardation effects (1997) Ferroelectrics, 191, pp. 319-333; Shur, V., Kinetics of polarization reversal in normal and relaxor ferroelectrics: relaxation effects (1998) Phase Trans, 65, pp. 49-72; Shur, V., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , Wiley-VCH, Weinheim, J.W.P. Schmelzer (Ed.); Shur, V., Kinetics of ferroelectric domains: application of general approach to LiNbO3 and LiTaO3 (2006) J Mat Sci, 41 (1), pp. 199-210; Shur, V., Popov, Y., Korovina, N.V., Bound internal field in lead germinate (1984) Sov Phys Solid State, 26, pp. 471-474; Shur, V., Letuchev, V.V., Rumyantsev, E.L., Field dependence of the polarization switching parameters and shape of domains in lead germanate (1984) Sov Phys Solid State, 26, pp. 1521-1522; Shur, V., Letuchev, V.V., Rumyantsev, E.L., Ovechkina, I.V., Triangular domains in lead germanate (1985) Sov Phys Solid State, 27, pp. 959-960; Shur, V., Gruverman, A.L., Letuchev, V.V., Rumyantsev, E.L., Subbotin, A.L., Domain structure of lead germanate (1989) Ferroelectrics, 98, pp. 29-49; Shur, V., Gruverman, A.L., Kuminov, V.P., Tonkachyova, N.A., Dynamics of plane domain walls in lead germanate and gadolinium molybdate (1990) Ferroelectrics, 111, pp. 197-206; Shur, V., Rumyantsev, E.L., Makarov, S.D., Kinetics of phase transformations in real finite systems: application to switching in ferroelectrics (1998) J Appl Phys, 84, pp. 445-451; Shur, V., Rumyantsev, E.L., Makarov, S.A., Kozhevnikov, V.L., Nikolaeva, E.V., Shishkin, E.I., How to learn the domain kinetics from the switching current data (1999) Int Ferroelectrics, 27, pp. 179-194; Shur, V., Lomakin, G.G., Kuminov, V.P., Pelegov, D.V., Beloglazov, S.S., Slovikovski, S.V., Sorkin, I.L., Fractal-cluster kinetics in phase transformations in relaxor ceramic PLZT (1999) Phys Solid State, 41, pp. 453-456; Shur, V., Rumyantsev, E.L., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Domain kinetics during periodic domain patterning in lithium niobate (1999) Phys Solid State, 41, pp. 1681-1687; Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl Phys Lett, 76 (2), pp. 143-145; Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl Phys Lett, 77 (22), pp. 3636-3638; Shur, V., Rumyantsev, E., Nikolaeva, E., Shishkin, E., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate (2000) SPIE Proceedings on Smart Structures and Materials, 3992, pp. 143-154; Shur, V., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., Formation of self-organized nanoscale domain patterns during spontaneous backswitching in lithium niobate (2001) Ferroelectrics, 253, pp. 105-114; Shur, V., Rumyantsev, E.L., Pelegov, D.V., Kozhevnikov, V.L., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Ivanov, R.K., Barkhausen jumps during domain wall motion in ferroelectrics (2002) Ferroelectrics, 267, pp. 347-353; Shur, V., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., Domain shape in congruent and stoichiometric lithium tantalate (2002) Ferroelectrics, 269, pp. 195-200; Shur, V., Nikolaeva, E.V., Shishkin, E.I., Ferroelectric nanodomain structures in LiNbO3 and LiTaO3: investigation by scanning probe microscopy (2003) Phys Low-Dim Str, 3 (4), pp. 139-148; Shur, V., Lomakin, G.G., Rumyantsev, E.L., Beloglazov, S.S., Pelegov, D.V., Sternberg, A., Krumins, A., Fractal clusters in relaxor PLZT ceramics: evolution in electric field (2004) Ferroelectrics, 299, pp. 75-81; Shur, V., Shishkin, E., Rumyantsev, E., Nikolaeva, E., Shur, A., Batchko, R., Fejer, M., Kitamura, K., Self-organization in LiNbO3 and LiTaO3: formation of micro- and nanoscale domain patterns (2004) Ferroelectrics, 304, pp. 111-116; Shur, V., Lomakin, G.G., Rumyantsev, E.L., Yakutova, O.V., Pelegov, D.V., Sternberg, A., Kosec, M., Polarization reversal in heterophase nanostructures: relaxor PLZT ceramics (2005) Phys Solid State, 47 (7), pp. 1340-1345; Shur, V., Rumyantsev, E.L., Lomakin, G.G., Yakutova, O.V., Pelegov, D.V., Sternberg, A., Kosec, M., Field induced evolution of nanoscale structures in relaxor PLZT ceramics (2005) Ferroelectrics, 316, pp. 23-29; Shur, V., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl Phys Lett, 87 (2), p. 022905; Ya, S.V., Shishkin, E.I., Kuznetsov, D.K., Lobov, A.I., Dolbilov, M.A., Tascu, S., Baldi, P., Gallo, K., (2006) Modification of the domain kinetics in congruent lithium niobate by proton exchanged surface layers, p. 224; Shvartsman, V.V., Kholkin, A.L., Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy (2004) Phys Rev B, 69, p. 014102; Shvartsman, V.V., Kholkin, A.L., Orlova, A., Kiselev, D., Bogomolov, A.A., Sternberg, A., Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics (2005) Appl Phys Lett, 86 (20), p. 202907; Soergel, E., Visualization of ferroelectric in bulk single crystals (2005) Appl Phys B, 81, pp. 729-752; Sones, C.L., Mailis, S., Brocklesby, W.S., Eason, R.W., Owen, J.R., Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations (2002) J Mater Chem, 12 (2), pp. 295-298; Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features (2001) J Appl Phys, 90, pp. 1387-1402; Terabe, K., Takekawa, S., Nakamura, M., Kitamura, K., Higuchi, S., Gotoh, Y., Gruverman, A., Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope (2002) Appl Phys Lett, 81, pp. 2044-2046; Valdivia, C.E., Sones, C.L., Scott, J.G., Mailis, S., Eason, R.W., Scrymgeour, D.A., Gopalan, V., Clark, I., Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination (2005) Appl Phys Lett, 86, p. 022906; WebjÖRn, J., Pruneri, V., Russell, P.S.J., Barr, J.R.M., Hanna, D.C., Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes (1994) Electron Lett, 30 (11), pp. 894-895; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Appl Phys Lett, 62, pp. 435-436; Yin, Q.R., Li, G.R., Zeng, H.R., Liu, X.X., Heiderhoff, R., Balk, L.J., Ferroelectric domain structures in (Pb, La)(Zr, Ti)O3 ceramics (2004) Appl Phys A, 78 (5), pp. 699-702; Zhu, S.-N., Zhu, Y.-Y., Zhang, Z.-Y., Shu, H., Wang, H.-F., Hong, J.-F., Ge, C.-Z., Ming, N.-B., LiTaO3 crystal periodically poled by applying an external pulsed field (1995) J Appl Phys, 77 (10), pp. 5481-5483; Zhu, Y.-Y., Zhu, S.-N., Hong, J.-F., Ming, N.-B., Domain inversion in LiNbO3 by proton exchange and quick heat treatment (1994) Appl Phys Lett, 65, pp. 558-560 |