Wave-Space Representation for the Variational Upper Bound of the Helmholtz Free Energy in The Tight-Binding Approximation / Finkel’shtein A.B. // Advanced Studies in Theoretical Physics. - 2014. - V. 8, l. 8. - P. 389-391.

ISSN:
13131311
Type:
Article
Abstract:
The wave-space expression is obtained for the variational upper bound of the Helmholtz free energy described in the framework of the tight-binding model. © 2014, Arkadiy B. Finkel’shtein.
Author keywords:
Helmholtz free energy; Tight-binding model; Transition metal; Variational method; Wave space
Index keywords:
нет данных
DOI:
10.12988/astp.2014.4226
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907659624&doi=10.12988%2fastp.2014.4226&partnerID=40&md5=23205e257a9a8921d4227d54b00e7521
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907659624&doi=10.12988%2fastp.2014.4226&partnerID=40&md5=23205e257a9a8921d4227d54b00e7521
Affiliations Ural Federal University, Mira st. 19, Ekaterinburg, Russian Federation
Author Keywords Helmholtz free energy; Tight-binding model; Transition metal; Variational method; Wave space
References Aryasetiawan, F., Silbert, M., Stott, M.J., Thermodynamic properties of liquid transition metals (1986) J. Phys. F: Met. Phys, 16, pp. 1419-1428; Ducastelle, F., (1970) J. Physique, 31, p. 1055; Wertheim, M.S., Exact solution of the Percus-Yevick integral equation for hard spheres, (1963) Phys. Rev. Lett, 10, pp. 321-323; Thiele, E., Equation of state for hard spheres (1963) J. Chem. Phys, 39, pp. 474-479; Percus, J.K., Yevick, G.Y., Analysis of classical statistical mechanics by means of collective coordinates, (1958) Phys. Rev, 110, pp. 1-13
Correspondence Address Finkel’shtein, A.B.; Ural Federal University, Mira st. 19, Russian Federation
Publisher Hikari Ltd.
Language of Original Document English
Abbreviated Source Title Adv. Stud.Theor. Phys.
Source Scopus