References |
Kim, S., Jung, J.Y., Song, H.H., Song, S.J., Ahn, K.Y., Lee, S.M., Lee, Y.D., Kang, S., Optimization of molten carbonate fuel cell (MCFC) and homogeneous charge compression ignition (HCCI) engine hybrid system for distributed power generation (2014) Int. J. Hydrogen Energy, 39, p. 1826; Falcucci, G., Jannelli, E., Minutillo, M., Ubertini, S., Han, J., Yoon, S.P., Nam, S.W., Integrated numerical and experimental study of a MCFC-plasma gasifier energy system (2012) Applied Energy, 97, p. 734; Discepoli, G., Cinti, G., Desideri, U., Penchini, D., Proietti, S., Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment (2012) Int. J. Greenhouse Gas Control, 9, p. 372; Milewski, J., Bujalski, W., Wołowicz, M., Futyma, K., Kucowski, J., Bernat, R., Experimental investigation of CO2 separation from lignite flue gases by 100cm2 single Molten Carbonate Fuel Cell (2014) Int. J. Hydrogen Energy, 39, p. 1558; Jia, L., Tian, Y., Liu, Q., Xia, C., Yu, J., Wang, Z., Zhao, Y., Li, Y., A direct carbon fuel cell with (molten carbonate)/(doped ceria) composite electrolyte (2010) J. Power Sources, 195, p. 5581; Pointon, K., Lakeman, B., Irvine, J., Bradley, J., Jain, S., The development of a carbon-air semi fuel cell (2006) J. Power Sources, 162, p. 750; Cassir, M., McPhail, S.J., Moreno, A., Strategies and new developments in the field of molten carbonates and high-temperature fuel cells in the carbon cycle (2012) International Journal of Hydrogen Energy, 37, p. 19345; Rui, Z., Anderson, M., Lin, Y.S., Li, Y., Modeling and analysis of carbon dioxide permeation through ceramic-carbonate dual-phase membranes (2009) J. Membrane Science, 345, p. 110; Bodén, A., Di, J., Lagergren, C., Lindbergh, G., Wang, C.Y., Conductivity of SDC and (Li/Na)2CO3 composite electrolytes in reducing and oxidising atmospheres (2007) J. Power Sources, 172, p. 520; Wang, X., Ma, Y., Zhu, B., State of the art ceria-carbonate composites (3C) electrolyte for advanced low temperature ceramic fuel cells (LTCFCs) (2012) Int. J. Hydrogen Energy, 37, p. 19417; Morita, H., Kawase, M., Mugikura, Y., Asano, K., Degradation mechanism of molten carbonate fuel cell based on long-term performance: Long-term operation by using bench-scale cell and post-test analysis of the cell (2010) J. Power Sources, 195, p. 6988; Elleuch, A., Sahraoui, M., Boussetta, A., Halouani, K., Li, Y., 2-D numerical modeling and experimental investigation of electrochemical mechanisms coupled with heat and mass transfer in a planar direct carbon fuel cell (2014) J. Power Sources, 248, p. 44; Appleby, A.J., Nicholson, S., Oxygen reduction in carbonate melts: Significance of the peroxide and superoxide ions (1972) J. Electroanal. Chem, 38, p. 497; Appleby, A.J., Nicholson, S., The reduction of oxygen in molten lithium carbonate (1974) J. Electroanal. Chem, 53, p. 105; Dunks, G.B., Stelman, D., Electrochemical studies of molten sodium carbonate (1983) Inorg. Chem., 22, p. 2168; Gong, Y., Li, X., Zhang, L., Tharp, W., Qin, C., Huang, K., Molten carbonates as an effective oxygen reduction catalyst for 550-650 °c solid oxide fuel cells (2013) J. Electrochem. Soc., 160, p. F958; Bychin, V.P., Chupakhin, E.O., Batalov, N.N., Effect of cationic composition on the mechanism of the oxygen cathodic reduction in carbonate melts (1996) Russ. J. Electrochem., 32, p. 365; Scaccia, S., Frangini, S., Dellepiane, S., Enhanced O2 solubility by RE2O3 (RE = La, Gd) additions in molten carbonate electrolytes for MCFC (2008) J. Mol. Liq., 138, p. 107; Peelen, W.H.A., Van Driel, M., Hemmes, K., De Wit, J.H.W., Study of the (electro) chemical equilibria in molten carbonate under MCFC cathode gas conditions. Part II: Non-equilibrium study of (electro) chemical reactions involved in oxygen reduction in molten carbonate (1998) Electrochim. Acta, 43, p. 3313; Janowitz, K., Kah, M., Wendt, H., Molten carbonate fuel cell research: Part I. Comparing cathodic oxygen reduction in lithium/potassium and lithium/sodium carbonate melts (1999) Electrochim. Acta, 45, p. 1025; Tomczyk, P., Mosialek, M., Investigation of the oxygen electrode reaction in basic molten carbonates using electrochemical impedance spectroscopy (2001) Electrochim. Acta, 46, p. 3023; Nishina, T., Uchida, I., Selman, J.R., Gas Electrode Reactions in Molten Carbonate Media. Part V. Electrochemical Analysis of the Oxygen Reduction Mechanism at a Fully Immersed Gold Electrode (1994) J. Electrochem. Soc., 141, p. 1191; Lu, S.-H., Selman, J.R., Electrode kinetics of oxygen reduction on gold in molten carbonate (1992) J. Electroanal. Chem., 333, p. 257; Yamada, K., Nishina, T., Uchida, I., Selman, J.R., Kinetic study of oxygen reduction in molten Li2CO3-K2CO3 under pressurized conditions (1993) Electrochim. Acta, 38, p. 2405; Yamada, K., Nishina, T., Uchida, I., Kinetic study of oxygen reduction in molten Li2CO3-Na2CO3 under pressurized conditions (1995) Electrochim. Acta, 40, p. 1927; Reeve, R.W., Tseung, A.C.C., Factors affecting the dissolution and reduction of oxygen in molten carbonate electrolytes. Part 1: Effect of temperature and alkali carbonate mixture (1996) J. Electroanal. Chem., 403, p. 69; Mitsushima, S., Okuno, S., Kamiya, N., Ota, K., Dependence of Oxygen Reduction Reaction on Temperature in (Li/Na/La)CO3 (2007) ECS Transactions, 3, p. 195; Frangini, S., Scaccia, S., Sensitive Determination of Oxygen Solubility in Alkali Carbonate Melts (2004) J. Electrochem. Soc., 151, p. A1251; Adanuvor, P.K., White, R.E., Appleby, A.J., A Computer Simulation of the Oxygen Reduction Reaction in Carbonate Melts (1990) J. Electrochem. Soc., 137, p. 2095; Nishina, T., Ohuchi, S., Yamada, K., Uchida, I., Water effect on oxygen reduction in molten (Li + K)CO3 eutectic (1996) J. Electroanal. Chem., 408, p. 181; Bieniasz, L.K., Tomczyk, P., Kinetics of the oxygen electrode reaction in molten Li + Na carbonate eutectic: Part 6. Quantitative analysis of the linear scan voltammetric curves for the first reduction process at monocrystalline NiO electrodes (1993) J. Electroanal. Chem., 353, p. 195; Nekrasov, V.N., Terentiev, D.I., Batalov, N.N., Barbin, N.M., Konopelko, M.A., On the possibility to estimate oxide ion equilibrium in mixtures of alkali metal carbonates by methods of molecular thermodynamics (2002) Elektrokhimicheskaya Energetika, 1, p. 3; Nekrasov, V.N., Terentiev, D.I., Barbin, N.M., Moiseyev, G.K., Thermodynamic modeling of mixtures of alkali metal carbonates in equilibrium with reducing gas medium (H2, CH4, CO, CO2, H2O) (2001) Rasplavy, 4, p. 67; Lu, S.N., Selman, J.R., Influence of Chemical Equilibria on Oxygen Reduction Reaction in Molten Carbonate (1990) J. Electrochem. Soc., 137, p. 1125; Kunz, H.R., Murphy, L.A., The Effect of Oxidant Composition on the Performance of Molten Carbonate Fuel Cells (1988) J. Electrochem. Soc., 135, pp. 1124-1131 |