Oxygen reduction on gold electrode in Li2CO3 / K2CO3 (62 / 38 mol %) molten electrolyte: Experimental and simulation analysis / Nekrasov V.N., Lystsov A.A., Limanovskaya O.V., Batalov N.N., Konopelko M.A. // Electrochimica Acta. - 2015. - V. 182, l. . - P. 61-66.

ISSN:
00134686
Type:
Article
Abstract:
A kinetic model of oxygen reduction at an inert electrode in a carbonate melt has been proposed. Combined with the thermodynamic calculations of the chemical equilibria in the carbonate melts and with the diffusivity values taken from the literature, the model was used to simulate kinetics of oxygen reduction reaction at a gold electrode in the Li2CO3 / K2CO3 (62 / 38 mol %) molten electrolyte under 0.33 O2 + 0.67 CO2 atmosphere at 923 K for the case of coulostatic pulse perturbation. The simulation has shown that the partial exchange current of the O2- reduction step makes the largest contribution to the overall exchange current, and neutralization of the oxide ion by CO2 controls the rate of the overall electrode process. The total exchange current per one-electron electrode reaction was estimated as 83 mA/cm2. The simulation has demonstrated satisfactory agreement with the experiment. © 2015 Elsevier Ltd. All rights reserved.
Author keywords:
Index keywords:
Electrolytes; Electrolytic reduction; Gold; Ion exchange; Oxygen; Reaction kinetics; Chemical equilibriums; Electrode process; Electrode reactions; Exchange currents; Molten electrolytes; Oxygen reduc
DOI:
10.1016/j.electacta.2015.09.04
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941985379&doi=10.1016%2fj.electacta.2015.09.043&partnerID=40&md5=d47db2c86872773e5ff5baca6ef898da
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941985379&doi=10.1016%2fj.electacta.2015.09.043&partnerID=40&md5=d47db2c86872773e5ff5baca6ef898da
Affiliations Institute of High-Temperature Electrochemistry, Ural Branch of RAS, Akademicheskaya 20, Yekaterinburg, Russian Federation
References Kim, S., Jung, J.Y., Song, H.H., Song, S.J., Ahn, K.Y., Lee, S.M., Lee, Y.D., Kang, S., Optimization of molten carbonate fuel cell (MCFC) and homogeneous charge compression ignition (HCCI) engine hybrid system for distributed power generation (2014) Int. J. Hydrogen Energy, 39, p. 1826; Falcucci, G., Jannelli, E., Minutillo, M., Ubertini, S., Han, J., Yoon, S.P., Nam, S.W., Integrated numerical and experimental study of a MCFC-plasma gasifier energy system (2012) Applied Energy, 97, p. 734; Discepoli, G., Cinti, G., Desideri, U., Penchini, D., Proietti, S., Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment (2012) Int. J. Greenhouse Gas Control, 9, p. 372; Milewski, J., Bujalski, W., Wołowicz, M., Futyma, K., Kucowski, J., Bernat, R., Experimental investigation of CO2 separation from lignite flue gases by 100cm2 single Molten Carbonate Fuel Cell (2014) Int. J. Hydrogen Energy, 39, p. 1558; Jia, L., Tian, Y., Liu, Q., Xia, C., Yu, J., Wang, Z., Zhao, Y., Li, Y., A direct carbon fuel cell with (molten carbonate)/(doped ceria) composite electrolyte (2010) J. Power Sources, 195, p. 5581; Pointon, K., Lakeman, B., Irvine, J., Bradley, J., Jain, S., The development of a carbon-air semi fuel cell (2006) J. Power Sources, 162, p. 750; Cassir, M., McPhail, S.J., Moreno, A., Strategies and new developments in the field of molten carbonates and high-temperature fuel cells in the carbon cycle (2012) International Journal of Hydrogen Energy, 37, p. 19345; Rui, Z., Anderson, M., Lin, Y.S., Li, Y., Modeling and analysis of carbon dioxide permeation through ceramic-carbonate dual-phase membranes (2009) J. Membrane Science, 345, p. 110; Bodén, A., Di, J., Lagergren, C., Lindbergh, G., Wang, C.Y., Conductivity of SDC and (Li/Na)2CO3 composite electrolytes in reducing and oxidising atmospheres (2007) J. Power Sources, 172, p. 520; Wang, X., Ma, Y., Zhu, B., State of the art ceria-carbonate composites (3C) electrolyte for advanced low temperature ceramic fuel cells (LTCFCs) (2012) Int. J. Hydrogen Energy, 37, p. 19417; Morita, H., Kawase, M., Mugikura, Y., Asano, K., Degradation mechanism of molten carbonate fuel cell based on long-term performance: Long-term operation by using bench-scale cell and post-test analysis of the cell (2010) J. Power Sources, 195, p. 6988; Elleuch, A., Sahraoui, M., Boussetta, A., Halouani, K., Li, Y., 2-D numerical modeling and experimental investigation of electrochemical mechanisms coupled with heat and mass transfer in a planar direct carbon fuel cell (2014) J. Power Sources, 248, p. 44; Appleby, A.J., Nicholson, S., Oxygen reduction in carbonate melts: Significance of the peroxide and superoxide ions (1972) J. Electroanal. Chem, 38, p. 497; Appleby, A.J., Nicholson, S., The reduction of oxygen in molten lithium carbonate (1974) J. Electroanal. Chem, 53, p. 105; Dunks, G.B., Stelman, D., Electrochemical studies of molten sodium carbonate (1983) Inorg. Chem., 22, p. 2168; Gong, Y., Li, X., Zhang, L., Tharp, W., Qin, C., Huang, K., Molten carbonates as an effective oxygen reduction catalyst for 550-650 °c solid oxide fuel cells (2013) J. Electrochem. Soc., 160, p. F958; Bychin, V.P., Chupakhin, E.O., Batalov, N.N., Effect of cationic composition on the mechanism of the oxygen cathodic reduction in carbonate melts (1996) Russ. J. Electrochem., 32, p. 365; Scaccia, S., Frangini, S., Dellepiane, S., Enhanced O2 solubility by RE2O3 (RE = La, Gd) additions in molten carbonate electrolytes for MCFC (2008) J. Mol. Liq., 138, p. 107; Peelen, W.H.A., Van Driel, M., Hemmes, K., De Wit, J.H.W., Study of the (electro) chemical equilibria in molten carbonate under MCFC cathode gas conditions. Part II: Non-equilibrium study of (electro) chemical reactions involved in oxygen reduction in molten carbonate (1998) Electrochim. Acta, 43, p. 3313; Janowitz, K., Kah, M., Wendt, H., Molten carbonate fuel cell research: Part I. Comparing cathodic oxygen reduction in lithium/potassium and lithium/sodium carbonate melts (1999) Electrochim. Acta, 45, p. 1025; Tomczyk, P., Mosialek, M., Investigation of the oxygen electrode reaction in basic molten carbonates using electrochemical impedance spectroscopy (2001) Electrochim. Acta, 46, p. 3023; Nishina, T., Uchida, I., Selman, J.R., Gas Electrode Reactions in Molten Carbonate Media. Part V. Electrochemical Analysis of the Oxygen Reduction Mechanism at a Fully Immersed Gold Electrode (1994) J. Electrochem. Soc., 141, p. 1191; Lu, S.-H., Selman, J.R., Electrode kinetics of oxygen reduction on gold in molten carbonate (1992) J. Electroanal. Chem., 333, p. 257; Yamada, K., Nishina, T., Uchida, I., Selman, J.R., Kinetic study of oxygen reduction in molten Li2CO3-K2CO3 under pressurized conditions (1993) Electrochim. Acta, 38, p. 2405; Yamada, K., Nishina, T., Uchida, I., Kinetic study of oxygen reduction in molten Li2CO3-Na2CO3 under pressurized conditions (1995) Electrochim. Acta, 40, p. 1927; Reeve, R.W., Tseung, A.C.C., Factors affecting the dissolution and reduction of oxygen in molten carbonate electrolytes. Part 1: Effect of temperature and alkali carbonate mixture (1996) J. Electroanal. Chem., 403, p. 69; Mitsushima, S., Okuno, S., Kamiya, N., Ota, K., Dependence of Oxygen Reduction Reaction on Temperature in (Li/Na/La)CO3 (2007) ECS Transactions, 3, p. 195; Frangini, S., Scaccia, S., Sensitive Determination of Oxygen Solubility in Alkali Carbonate Melts (2004) J. Electrochem. Soc., 151, p. A1251; Adanuvor, P.K., White, R.E., Appleby, A.J., A Computer Simulation of the Oxygen Reduction Reaction in Carbonate Melts (1990) J. Electrochem. Soc., 137, p. 2095; Nishina, T., Ohuchi, S., Yamada, K., Uchida, I., Water effect on oxygen reduction in molten (Li + K)CO3 eutectic (1996) J. Electroanal. Chem., 408, p. 181; Bieniasz, L.K., Tomczyk, P., Kinetics of the oxygen electrode reaction in molten Li + Na carbonate eutectic: Part 6. Quantitative analysis of the linear scan voltammetric curves for the first reduction process at monocrystalline NiO electrodes (1993) J. Electroanal. Chem., 353, p. 195; Nekrasov, V.N., Terentiev, D.I., Batalov, N.N., Barbin, N.M., Konopelko, M.A., On the possibility to estimate oxide ion equilibrium in mixtures of alkali metal carbonates by methods of molecular thermodynamics (2002) Elektrokhimicheskaya Energetika, 1, p. 3; Nekrasov, V.N., Terentiev, D.I., Barbin, N.M., Moiseyev, G.K., Thermodynamic modeling of mixtures of alkali metal carbonates in equilibrium with reducing gas medium (H2, CH4, CO, CO2, H2O) (2001) Rasplavy, 4, p. 67; Lu, S.N., Selman, J.R., Influence of Chemical Equilibria on Oxygen Reduction Reaction in Molten Carbonate (1990) J. Electrochem. Soc., 137, p. 1125; Kunz, H.R., Murphy, L.A., The Effect of Oxidant Composition on the Performance of Molten Carbonate Fuel Cells (1988) J. Electrochem. Soc., 135, pp. 1124-1131
Correspondence Address Konopelko, M.A.; Institute of High-Temperature Electrochemistry, Ural Branch of RAS, Akademicheskaya 20, Russian Federation
Publisher Elsevier Ltd
CODEN ELCAA
Language of Original Document English
Abbreviated Source Title Electrochim Acta
Source Scopus