The finite basis problem for Kauffman monoids / Auinger K.,Chen Yuzhu,Hu Xun,Luo Yanfeng,Volkov M. V. // ALGEBRA UNIVERSALIS. - 2015. - V. 74, l. 3-4. - P. 333-350.

ISSN/EISSN:
0002-5240 / 1420-8911
Type:
Article
Abstract:
We prove a sufficient condition under which a semigroup admits no finite identity basis. As an application, it is shown that the identities of the Kauffman monoid are nonfinitely based for each . This result holds also for the case when is considered as an involution semigroup under either of its natural involutions.
Author keywords:
semigroup; involution semigroup; semigroup identity; variety; finite basis problem; Kauffman monoid; wire monoid; Rees matrix semigroup EQUATIONAL THEORIES; SEMIGROUPS; VARIETIES
DOI:
10.1007/s00012-015-0356-x
Web of Science ID:
ISI:000361534400009
Соавторы в МНС:
Другие поля
Поле Значение
Month NOV
Publisher SPRINGER BASEL AG
Address PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND
Language English
EISSN 1420-8911
Keywords-Plus EQUATIONAL THEORIES; SEMIGROUPS; VARIETIES
Research-Areas Mathematics
Web-of-Science-Categories Mathematics
Author-Email karl.auinger@univie.ac.at luoyf@lzu.edu.cn mikhail.volkov@usu.ru
ResearcherID-Numbers Volkov, Mikhail/F-1407-2014
ORCID-Numbers Volkov, Mikhail/0000-0002-9327-243X
Funding-Acknowledgement Natural Science Foundation of China {[}10971086, 11371177]; Presidential Programme ``Leading Scientific Schools of the Russian Federation{''} {[}5161.2014.1]; Russian Foundation for Basic Research {[}14-01-00524]; Ministry of Education and Science of the Russian Federation {[}1.1999.2014/K]
Funding-Text Yuzhu Chen, Xun Hu, Yanfeng Luo have been partially supported by the Natural Science Foundation of China (projects no. 10971086, 11371177). M. V. Volkov acknowledges support from the Presidential Programme ``Leading Scientific Schools of the Russian Federation{''
Number-of-Cited-References 24
Usage-Count-Since-2013 2
Journal-ISO Algebr. Universalis
Doc-Delivery-Number CR7MN