Effect of indoor activity size distribution of 222Rn progeny in-depth dose estimation / Yuness M., Mohamed A., AbdEl-hady M., Moustafa M., Nazmy H. // Applied Radiation and Isotopes. - 2015. - V. 97, l. . - P. 34-39.

ISSN:
09698043
Type:
Article
Abstract:
In this work, the attached and unattached activity size distribution of 222Rn progeny (214Bi and 218Po) were measured indoor. The fraction of attached progeny was collected using a low-pressure Berner cascade-impactor technique. A constructed wire screen diffusion battery was used for collecting the fraction of unattached progeny. Most of the attached activities for 214Bi progeny were associated with the aerosol particles of the accumulation mode. The active median aerodynamic diameter (AMAD) of this mode for 214Bi was determined to be 350nm with a geometric standard division (GSD) of 3. The GSD of unattached size distributions for 218Po was 1.3 with an active median aerodynamic diameter (AMTD) of 1.3nm. Given that dose estimation is sensitive to environmental conditions, an analytical method was introduced to compute the local energy deposition of 218Po alpha particles in a target volume of 1μm spheres located at different depths in bronchial epithelium. While the depth-dose distributions for nuclides uniformly distributed within the epithelium were found to be practically constant with depth, they decreased in an almost linear fashion with increasing depth for nuclides on the airway surface. © 2014 Elsevier Ltd.
Author keywords:
222Rn progeny; Activity size distributions; Dosimetric models; Unattached fraction
Index keywords:
Aerodynamics; Isotopes; Meteorological instruments; 222Rn progeny; Activity size distributions; Dosimetric models; Environmental conditions; Geometric standards; Median aerodynamic diameter
DOI:
10.1016/j.apradiso.2014.12.002
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919363444&doi=10.1016%2fj.apradiso.2014.12.002&partnerID=40&md5=e01191c3f0976cde3ba9f11b672aa3ea
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919363444&doi=10.1016%2fj.apradiso.2014.12.002&partnerID=40&md5=e01191c3f0976cde3ba9f11b672aa3ea
Affiliations Physics Department - Faculty of Science, Minia University, Minia, Egypt; Ural Federal University, Mira Street 19, Yekaterinburg, Russian Federation
Author Keywords 222Rn progeny; Activity size distributions; Dosimetric models; Unattached fraction
Chemicals/CAS radon 222, 14859-67-7
References Baldwin, F., Hovey, A., McEwen, T., Oconnr, R., Unruh, H., Bowden, D.H., Surface to nuclear in human bronchial epithelium. Relationship to penetration by Rn daughters (1991) Health Phys., 60, pp. 155-162; Becker, K.H., Reineking, A., Scheibel, H.G., Porstendorfer, J., Radon daughter activity size distributions (1984) Radiat. Prot. Dosim., 7, pp. 147-150; Butterweck-Dempewolf, G., Shuler, C.H., Vezzu, G., Size Distribution of the Unattached Fraction of Radon Progeny (1997) European Conference on Protection.; Dankelmann, V., Reineking, A., Porstendörfer, J., Determination of neutralisation rates of 218Po ions in air (2001) Radiat. Prot. Dosim., 94 (4), pp. 353-357; El-Hussein, A., Ahmed, A.A., Mohammed, A., Radiation dose to the human respiratory tract from inhalation of Radon-222 and its progeny (1997) Appl. Radiat. Isot., 7, p. 783; El-Hussein, A., Unattached fractions, attachment and deposition rates of radon progeny in indoor air (1996) Appl. Radiat. Isot., 47 (5-6), pp. 515-523; Georges, M., Risk Assessment of Exposure to Radon Decay Products Final Report (2000) Commission of the European Communities C.E.C.; Harly, N.H., Cycling cells radon res (1995) Notes, 15, pp. 9-10; Hofmann, W., Nosterer, M., Menache, M.G., Crawford-Brown, D.J., Caswell, R.S., Coyne, J.J., Microdosimetry and cellular radiation effects of radon progeny in human bronchial airway (1994) Radiat. Prot. Dosim., 52, pp. 381-385; Hofmann, W., Mainelis, G., Mohamed, A., BalBshay, I., Comparison of different modeling approaches in current lung dosimetry models (1996) Environ. Int., 22 (1), pp. S965-S976; Hofamnn, W., Martonen, T.B., Menache, M.G., A dosimetric model for localised radon progeny accumulations at tracheobronchial bifurcations (1990) Radiat. Prot. Dosim., 30, pp. 245-259; Hofmann, W., Steinhäusler, F., Pohl, E., Dose calculation for the respiratory tract from inhaled natural radioactive nuclides as a function of age part 1. Compartments deposition, retention, and resulting dose (1979) Health Phys., 37, pp. 517-523; Hopke, P.K., Ramamurthi, M., Li, C.S., Measurement of the size distributions of radon progeny in indoor air (1990) Aerosol: Science, Industry, Health and Environment, pp. 842-847. , 2, Pergamon Press, Ltd, Oxford, S. Masuda, K. Takashi (Eds.); Huet, C., Tymen, G., Boulaud, D., Size distribution, equilibrium ratio and unattached fraction of radon decay products under typical indoor domestic conditions (2001) Sci. Total Environ., 272, pp. 97-103; Human Respiratory Tract Model for Radiological Protection (1994), Pergamon Press, Oxford, ICRP Publication 66; James, A.C., Cross, F.T., Durham, J.S., Briant, J.K., Gehr, P., Masse, R., Cuddihy, R.G., Birchall, A., Dosimetry model for bronchial and extrathoracic tissues of the respiratory tract (1991) Radiat. Prot. Dosim., 37, pp. 221-230; Knutson, E.O., Whitby, K.T., Aerosol classification by electric mobility apparatus, theory and application (1975) J. Aerosol Sci., 6, p. 443; Kranrod, C., Tokonami, S., Ishikawa, T., Sorimachi, A., Janik, M., Shingaki, R., Furukawa, M., Chankow, N., Mitigation of the effective dose of radon decay products through the use of an air cleaner in a dwelling in Okinawa, Japan (2009) Appl. Radiat. Isot., 67, pp. 1127-1132; Lurzer, C., (1980), Uber Die Bestimmung von Multimodalen Grossenverteilungen Atmospharischer Aerosole Mittels UnterdrImpaktoren Dissertation Wien, Austria; Marsh, W., Brichall, A., Sensitivity analysis of the weighted equivalent lung dose per unit exposure from radon progeny (2000) Radiat. Prot. Dosim., 87 (3), pp. 167-178; Marsh, W., Brichall, A., Butterweck, G., Dorrian, M.-D., Huet, C., Ortega, X., Reinking, A., Wendt, J., Uncertainty analysis of the weighted equivalent lung dose per unit exposure to radon progeny in the home (2002) Radiat. Prot. Dosim., 102 (3), pp. 229-248; Mercer, R.R., Russell, M.L., Grapo, J.D., Radon dosimetry based on the depth distribution of nuclei in human and rat lungs (1991) Health Phys., 61 (1), pp. 117-130; Mishra, R., Mayya, Y.S., Kushwaha, H.S., Measurement of 220Rn/222Rn progeny deposition velocities on surfaces and their comparison with theoretical models (2009) Aerosol Sci., 40, pp. 1-15; Mohammed, A., Activity size distribution of short-lived radon progeny in indoor air (1999) Radiat. Prot. Dosim., 86 (2), pp. 139-145; Mohammed, A., El-Hussein, A., Comparison of outdoor activity size distributions of 220Rn and 222Rn progeny (2005) Appl. Radiat. Isot., 62, pp. 955-959; Mohamed, A., Ahmed, A.A., Ali, A.A., Yuness.M., Attached and unattached activity size distribution of short-lived radon progeny (Pb) and evaluation of deposition fraction (2008) J. Nucl. Radiat. Phys., 3 (2), pp. 101-108; Mostafa, Y., Mohamed, A., Hyam, N., Measurement of bithmuth (214Bi) in indoor air and evaluation of deposition fraction (2014) Int. J. Sci. Res. (IJSR), 3, pp. 1541-1546; National Research Council, (NRC), (1991) Comparative Dosimetry of Radon in Mines and Homes, , National Academy Press, Washington, DC; Nero, A.V., Radon and its decay products in indoor air: an overview (1988) Radon and its Decay Products in Indoor Air, pp. 1-53. , John Wiley & Sons, New York, W.W. Nazaroff, A.V. Nero (Eds.); Papastefanou, C., Radioactivity in the Environment, a Companion Series to the Journal of Environmental Radioactivity (2008), 12. , Radioactive Aerosols; Porstendörfer, J., Influence of physical parameters on doses from radon exposures (2002) Int. Congr. Ser., 1225, pp. 149-160; Ramamurthi, M., Hopke, P.K., On improving the validity of wire screen unattached fraction Rn daughter measurements (1989) Health Phys., 56, p. 189; Reineking, A., Scheibel, H.G., Hussin, A., Becker, K.H., Porstendorfer, J., Measurements of stage efficiency functions including inter-stage losses for Sierra and Berner impactor and evaluation of data by modified simplex method (1984) J. Aerosol Sci, 15, p. 346; Reineking, A., Porstendorfer, J., Butterweck, G., Kesten, J., Continuous measurements of free and aerosol-bund radon and thoron daughter products in air (1991), pp. 94-102. , In: Proceedings of Coll. Measurements of Radon and Radon Daughter Products. Koln, TeV Rheinland, FS-91-56-T; Reineking, A., Butterweck, G., Kesten, K., Porstendörfer, J., Thoron gas concentration and aerosol characteristics of thoron decay products (1992) Radiat. Prot. Dosim., 45, pp. 353-356; Reineking, A., Knutson, E.A., George, A.C., Solomon, S.B., Kesten, J., Butterweck, G., Porstendörfer, J., Size distribution of unattached and aerosol-attached short-lived radon decay products: some results of intercomparison measurements (1994) Radiat. Prot. Dosim., 56, pp. 113-118; Ruffle, M.P., The geometrical efficiency of a parallel disc-source and detector system (1967) Nucl. Instrum. Methods, 52, p. 354; Vaupotič, J., Kobal, I., Short communication radon doses based on alpha spectrometry (2004) Acta Chim. Slov., 51, pp. 159-168; Vaupotič, J., Kobal, I., Effective doses in schools based on nano-size radon progeny aerosols (2006) Atmos. Environ., 40, pp. 749-750; William, C.H., (1999) Aerosol Technology. Properties, Behavior, and Measurement of Airborne Particles, , Wiley, New York; Winkler-Heil, H.W., Comparison of modelling conceptsfor radon progeny lung dosimetry (2000), In: Proceeding of the Fifth International Conference on High Levels Health Levels of Natural Radiation and Radon Areas: Dose and Health Effects, International Congress Series 1225, September 4-7. Munich, Excerpts Medica; Yamasaki, K., Oki, Y., Yamada, Y., Tokonami, S., Iida, T., Optimization of measuring methods on size distribution of naturally occurring radioactive aerosols (2005) Int. Congr. Ser., 1276, pp. 297-298
Correspondence Address Yuness, M.; Ural Federal University, Mira Street 19, Russian Federation
Publisher Elsevier Ltd
CODEN ARISE
Language of Original Document English
Abbreviated Source Title Appl. Radiat. Isot.
Source Scopus