Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: A test of theory with convection / Gao J., Han M., Kao A., Pericleous K., Alexandrov D.V., Galenko P.K. // Acta Materialia. - 2016. - V. 103, l. . - P. 184-191.

ISSN:
13596454
Type:
Article
Abstract:
Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields up to 6 T were measured using a high-speed camera. The growth velocities for undercoolings below 120 K are depressed under low magnetic fields, but are recovered progressively under high magnetic fields. This retrograde behavior arises from two competing kinds of magnetohydrodynamics in the melt and becomes indistinguishable for higher undercoolings. The measured data is used for testing of a recent theory of dendritic growth with convection. A reasonable agreement is attained by assuming magnetic field-dependent flow velocities. As is shown, the theory can also account for previous data of dendritic growth kinetics in pure succinonitrile under normal gravity and microgravity conditions. These tests demonstrate the efficiency of the theory which provides a realistic description of dendritic growth kinetics of pure substances with convection. © 2015 Acta Materialia Inc.
Author keywords:
Dendritic solidification; Growth kinetics; Static magnetic field; Theory; Undercooling
Index keywords:
Bioelectric phenomena; High speed cameras; Kinetics; Magnetic fields; Magnetism; Magnetohydrodynamics; Nickel; Undercooling; Velocity; Dendritic solidification; High magnetic fields; Low magnetic fiel
DOI:
10.1016/j.actamat.2015.10.014
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84945262855&doi=10.1016%2fj.actamat.2015.10.014&partnerID=40&md5=f1555b520e4bf77da04cc324aad1932e
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84945262855&doi=10.1016%2fj.actamat.2015.10.014&partnerID=40&md5=f1555b520e4bf77da04cc324aad1932e
Affiliations Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China; Center for Numerical Modeling and Process Analysis, University of Greenwich, London, United Kingdom; Department of Mathematical Physics, Ural Federal University, Ekaterinburg, Russian Federation; Department of Physics and Astronomy, Friedrich Schiller University of Jena, Jena, Germany
Author Keywords Dendritic solidification; Growth kinetics; Static magnetic field; Theory; Undercooling
References Ivantsov, G.P., Temperature field around spherical, cylindrical and needle-shaped crystals which grow in supercooled melt (1947) Dokl. Akad. Nauk. SSSR, 58, pp. 567-569; Langer, J.S., Müller-Krumbhaar, H., Theory of dendritic growth - III. Effects of surface tension (1978) Acta Metall., 26, pp. 1697-1708; Hoyt, J.J., Asta, M., Karma, A., Atomistic and continuum modeling of dendritic solidification (2003) Mater. Sci. Eng. R, 41, pp. 121-163; Lipton, J., Kurz, W., Trivedi, R., Rapid dendrite growth in undercooled alloys (1987) Acta Metall., 35, pp. 957-964; Trivedi, R., Lipton, J., Kurz, W., Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts (1987) Acta Metall., 35, pp. 965-970; Boettinger, W., Coriell, S., Trivedi, R., Application of dendritic growth theory to the interpretation of rapid solidification microstructures (1988) Rapid Solidification Processing: Principles and Technologies IV, pp. 13-25. , R. Mehrabian, P.A. Parrish, Claitor's Publishing Division Baton Rouge; Willnecker, R., Herlach, D.M., Feuerbacher, B., Evidence of nonequilibrium processes in rapid solidification of undercooled metals (1989) Phys. Rev. Lett., 62, pp. 2707-2710; Eckler, K., Cochrane, R.F., Herlach, D.M., Feuerbacher, B., Jurisch, M., Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys (1992) Phys. Rev. B, 45, pp. 5019-5022; Arnold, C.B., Aziz, M.J., Schwarz, M., Herlach, D.M., Parameter-free test of alloy dendrite-growth theory (1999) Phys. Rev. B, 59, pp. 334-343; Funke, O., Phanikumar, G., Galenko, P.K., Chernova, L., Reutzel, S., Kolbe, M., Herlach, D.M., Dendrite growth velocity in levitated undercooled nickel melts (2006) J. Cryst. Growth, 297, pp. 211-222; Huang, S.-C., Glicksman, M.E., Overview 12: Fundamentals of dendritic solidification - I. Steady-state tip growth (1985) Acta Metall., 29, pp. 701-715; Glicksman, M.E., Koss, M.B., Winsa, E.A., Dendritic growth velocities in microgravity (1994) Phys. Rev. Lett., 73, pp. 573-576; Koss, M.B., LaCombe, J.C., Tennenhouse, L.A., Glicksman, M.E., Winsa, E.A., Dendritic growth tip velocities and radii of curvature in microgravity (1999) Metall. Mater. Trans. A, 30, pp. 3177-3190; Tong, X., Beckermann, C., Karma, A., Li, Q., Phase-field simulations of dendritic crystal growth in a forced flow (2001) Phys. Rev. e, 63, p. 061601; Jeong, J.-H., Dantzig, J.A., Goldenfeld, N., Dendritic growth with fluid flow in pure materials (2003) Metall. Mater. Trans. A, 34, pp. 459-466; Lu, Y., Beckermann, C., Ramirez, J.C., Three-dimensional phase-field simulations of the effect of convection on free dendritic growth (2005) J. Cryst. Growth, 280, pp. 320-334; Nestler, B., Danilov, D., Galenko, P.K., Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results (2005) J. Comput. Phys., 207, pp. 221-239; Boussiou, P., Pelce, P., Effect of a forced flow on dendritic growth (1989) Phys. Rev. A, 40, pp. 6673-6680; Alexandrov, D.V., Galenko, P.K., Selection criterion of stable dendritic growth at arbitrary Peclet numbers with convection (2013) Phys. Rev. e, 87, p. 062403; Alexandrov, D.V., Galenko, P.K., Dendrite growth under forced convection: Analysis methods and experimental tests (2014) Physics-Uspekhi, 57, pp. 771-786; Binder, S., Galenko, P.K., Herlach, D.M., The effect of fluid flow on the solidification of Ni2B from the undercooled melt (2014) J. Appl. Phys., 115, p. 053511; Jeong, J.-H., Goldenfeld, N., Dantzig, J.A., Phase field model for three-dimensional dendritic growth with fluid flow (2001) Phys. Rev. e, 64, p. 041602; Karma, A., Rappel, W.-J., Numerical simulation of three-dimensional dendritic growth (1998) Phys. Rev. Lett., 77, pp. 4050-4053; Binder, S., (2010) Undercooling and Solidification of Tetragonal Ni2B under Different Convective Flow Conditions, , PhD Thesis of Ruhr-University Bochum, Bochum; Eckler, K., Cochrane, R.F., Herlach, D.M., Feuerbacher, B., Non-equilibrium solidification in undercooled Ni-B alloys (1991) Mater. Sci. Eng. A, 133, pp. 702-705; Battersby, S.E., Cochrane, R.F., Mullis, A.M., Microstructural evolution and growth velocity-undercooling relationships in the systems Cu, Cu-O and Cu-Sn at high undercooling (2000) J. Mater. Sci., 35, pp. 1365-1373; Galenko, P.K., Danilov, D.A., Local non-equilibrium effect on rapid dendritic growth in a binary alloy melt (1997) Phys. Lett. A, 235, pp. 271-280; Gao, J., Zhang, Z.N., Zhang, Y.J., Measurements of dendritic growth velocities in undercooled melts of pure nickel under static magnetic fields (2012) Proceedings of A Symposium on Materials Research in Microgravity 2012 Held at the 141st TMS Annual Meeting and Exhibition, Orlando, USA, 11, pp. 72-79. , R. Hyers, V. Bojarevis, J. Downey, H. Henein, D. Matson, A. Seidel, D. Voss, M. San Soucie, NASA/CP-2012-217466; Yasuda, H., Ohnaka, I., Ninomiya, Y., Ishii, R., Fujita, S., Kishio, K., Levitation of metallic melt by using the simultaneous imposition of the alternating and the static magnetic fields (2004) J. Cryst. Growth, 260, pp. 475-485; Bojarevics, V., Pericleous, K., Modeling electromagnetically levitated liquid droplet oscillations (2003) ISIJ Inter., 43, pp. 890-898; Hyers, R.W., Fluid flow effects in levitated droplets (2005) Meas. Sci. Technol., 16, pp. 391-401; Lee, J.H., Matson, D.M., Binder, S., Kolbe, M., Herlach, D., Hyers, R.W., Magnetohydrodynamic modeling and experimental validation of convection inside electromagnetically levitated Co-Cu droplets (2014) Metall. Mater. Trans. B, 45, pp. 1018-1023; Li, X., Fautrelle, Y., Ren, Z., Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field (2007) Acta Mater., 55, pp. 3803-3813; Kao, A., Djambazov, G., Pericleous, K., Voller, V., Thermoelectric MHD in dendritic solidification (2009) Magnetohydrodynamics, 45, pp. 267-277; Mills, K.C., Monaghan, B.J., Keene, B.J., Thermal conductivities of molten metals: Part 1 pure metals (1996) Inter. Mater. Rev., 41, pp. 209-242; Iida, T., Guthrie, I.L., (1988) The Physical Properties of Liquid Metals, , Oxford University Press Inc. New York; Bragard, J., Karma, A., Lee, Y.H., Plapp, M., Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts (2002) Inter. Sci., 10, pp. 121-136; Monk, J., Yang, Y., Mendelev, M.I., Asta, M., Hoyt, J.J., Sun, D.Y., Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations (2010) Model. Simul. Mater. Sci. Eng., 18, p. 015004; Bokeloh, J., Rozas, R.E., Horbach, J., Wilde, G., Nucleation barriers for the liquid-to-crystal transition in Ni: Experiment and simulation (2011) Phys. Rev. Lett., 107, p. 145701; Brener, E.A., Effects of surface energy and kinetics on the growth of needle-like dendrites (1990) J. Cryst. Growth, 99, pp. 165-170; Alexandrov, D.V., Galenko, P.K., Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow (2015) Phys. Chem. Chem. Phys., 17, pp. 19149-19161
Correspondence Address Gao, J.; Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern UniversityChina
Publisher Elsevier Ltd
Language of Original Document English
Abbreviated Source Title Acta Mater
Source Scopus