Solute redistribution around crystal shapes growing under hyperbolic mass transport / Galenko P.K., Danilov D.A., Alexandrov D.V. // International Journal of Heat and Mass Transfer. - 2015. - V. 89, l. . - P. 1054-1060.

ISSN:
00179310
Type:
Article
Abstract:
Using a model of local non-equilibrium diffusion during rapid solidification of a binary system, the isosolutal shapes of growing crystals in steady-state approximation are obtained. It is found that for crystals growing with constant velocity along a selected coordinate direction, two isosolutal growth shapes can occur. These are: the parabolic platelet in two-dimensional case and the paraboloid of revolution in three-dimensional case. In the isothermal case of diffusionless solidification, when the velocity of solidification is equal to or greater than the solute diffusive speed in the bulk system, these interfaces can have an arbitrary configuration. Special attention is given to mathematical transformations from parabolic (paraboloidal) coordinates to usual Cartesian coordinates for Ivantsov solutions extended to the case of rapid dendritic growth in which the solidification velocity V is comparable with the solute diffusion speed VD in bulk liquid. © 2015 Elsevier Ltd. All rights reserved.
Author keywords:
Crystal; Dendrite; Interface; Non-Fickian diffusion; Solidification; Solute
Index keywords:
Crystals; Dendrites (metallography); Diffusion; Diffusion in solids; Interfaces (materials); Mathematical transformations; Solidification; Cartesian coordinate; Non-equilibrium diffusion; Non-Fickian
DOI:
10.1016/j.ijheatmasstransfer.2
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937468812&doi=10.1016%2fj.ijheatmasstransfer.2015.06.011&partnerID=40&md5=e2d2bb918d2cf20f51d8010854407435
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937468812&doi=10.1016%2fj.ijheatmasstransfer.2015.06.011&partnerID=40&md5=e2d2bb918d2cf20f51d8010854407435
Affiliations Friedrich-Schiller-Universität-Jena, Physikalisch-Astronomische Fakultät, Jena, Germany; Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Eggenstein-Leopoldshafen, Germany; Ural Federal University, Department of Mathematical Physics, Ekaterinburg, Russian Federation
Author Keywords Crystal; Dendrite; Interface; Non-Fickian diffusion; Solidification; Solute
References Ivantsov, G.P., Temeprature fireld around spherical, cylinder and needle-like dendrite growing in supercooled melt (1947) Dokl. Akad. Nauk SSSR, 58 (4), pp. 567-569; Ivantsov, G.P., On a growth of spherical and needle-like crystals of a binary alloy (1952) Dokl. Akad. Nauk SSSR, 83 (4), pp. 573-575; Ivantsov, G.P., Thermal and diffusional processes during crystal growth (1961) Growth of Crystals, 3, pp. 75-84. , A.V. Shubnikov, N.N. Sheftal, Akademia Nauk Moscow; Langer, J.S., Instabilities and pattern formation in crystal growth (1980) Rev. Mod. Phys., 52 (1), pp. 1-28; Pelce, P., Bensimon, D., Theory of dendrite dynamics (1987) Nucl. Phys. B - Proc. Suppl., 2, pp. 259-270; Trivedi, R., Kurz, W., Dendritic growth (1994) Int. Mater. Rev., 39 (2), pp. 49-74; Müller-Krumbhaar, H., Kurz, W., Brener, E., Solidification (2001) Phase Transformations in Materials, pp. 81-170. , G. Kostorz, Wiley-VCH Verlag GmbH & Co. KGaA Weinheim; Benamar, M., Bouissou, P., Pelce, P., An exact solution for the shape of a crystal growing in a forced flow (1988) J. Cryst. Growth, 92 (1-2), pp. 97-100; Dantzig, J.A., Rappaz, M., (2009) Solidification, Engineering Sciences, , EFPL Press Lausanne; Glicksman, M.E., Koss, M.B., Winsa, E.A., Dendritic growth velocities in microgravity (1994) Phys. Rev. Lett., 73, pp. 573-576; Herlach, D., Non-equilibrium solidification of undercooled metallic metls (1994) Mater. Sci. Eng. R: Rep., 12 (4-5), pp. 177-272; Horvay, G., Cahn, J., Dendritic and spheroidal growth (1961) Acta Metall., 9 (7), pp. 695-705; Temkin, D.E., On the growth of needle-like dendrite (1960) Dokl. Akad. Nauk SSSR, 132, pp. 1307-1310; McFadden, G.B., Coriell, S.R., Sekerka, R.F., Analytic solution for a non-axisymmetric isothermal dendrite (2000) J. Cryst. Growth, 208 (1-4), pp. 726-745; McFadden, G.B., Coriell, S.R., Sekerka, R.F., Effect of surface free energy anisotropy on dendrite tip shape (2000) Acta Mater., 48 (12), pp. 3177-3181; Galenko, P.K., Danilov, D.A., Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt (1997) Phys. Lett. A, 235 (3), pp. 271-280; Galenko, P.K., Danilov, D.A., Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions (1999) J. Cryst. Growth, 197 (4), pp. 992-1002; Jou, D., Casas-Vázquez, J., Lebon, G., (2010) Extended Irreversible Thermodynamics, , fourth ed. Springer Berlin; Galenko, P.K., Danilov, D.A., Steady-state shapes of growing crystals in the field of local nonequilibrium diffusion (2000) Phys. Lett. A, 272 (3), pp. 207-217; Alexandrov, D.V., Galenko, P.K., Dendrite growth under forced convection: Analysis methods and experimental tests (2014) Phys. Usp., 57, pp. 771-786; Li, S., Li, D., Liu, S., Gu, Z., Liu, W., Huang, J., An extended free dendritic growth model incorporating the nonisothermal and nonisosolutal nature of the solid-liquid interface (2015) Acta Mater., 83, pp. 310-317; Galenko, P.K., Krivilyov, M.D., Modelling of crystal pattern formation in isothermal undercooled alloys (2000) Model. Simul. Mater. Sci. Eng., 8 (1), pp. 81-94; Sekulic, D., Galenko, P., Krivilyov, M., Walker, L., Gao, F., Dendritic growth in Al-Si alloys during brazing. Part 2: Computational modeling (2005) Int. J. Heat Mass Transfer, 48 (12), pp. 2385-2396; Yang, Y., Humadi, H., Buta, D., Laird, B.B., Sun, D., Hoyt, J.J., Asta, M., Atomistic simulations of nonequilibrium Crystal-Growth kinetics from alloy melts (2011) Phys. Rev. Lett., 107 (2). , 025505-1-4; Jou, D., Galenko, P.K., Coarse graining for the phase-field model of fast phase transitions (2013) Phys. Rev. e, 88, pp. 0421511-0421518; Galenko, P., Local-nonequilibrium phase transition model with relaxation of the diffusion flux (1994) Phys. Lett. A, 190 (3-4), pp. 292-294; Galenko, P., Sobolev, S., Local nonequilibrium effect on undercooling in rapid solidification of alloys (1997) Phys. Rev. e, 55 (1), pp. 343-352; Bouissou, P., Pelcé, P., Effect of a forced flow on dendritic growth (1989) Phys. Rev. A, 40, pp. 6673-6680; Alexandrov, D.V., Pinigin, D.A., Selection of stable growth conditions for the parabolic dendrite tip in crystallization of multicomponent melts (2013) Tech. Phys., 58 (3), pp. 309-315; Alexandrov, D.V., Galenko, P.K., Herlach, D.M., Selection criterion for the growing dendritic tip in a non-isothermal binary system under forced convective flow (2010) J. Cryst. Growth, 312 (14), pp. 2122-2127; Alexandrov, D.V., Galenko, P.K., Selection criterion of stable dendritic growth at arbitrary Péclet numbers with convection (2013) Phys. Rev. e, 87, pp. 0624031-0624035
Correspondence Address Danilov, D.A.; Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT)Germany
Publisher Elsevier Ltd
CODEN IJHMA
Language of Original Document English
Abbreviated Source Title Int. J. Heat Mass Transf.
Source Scopus