Noise-induced generation of saw-tooth type transitions between climate attractors and stochastic excitability of paleoclimate / Alexandrov D.V., Bashkirtseva I.A., Ryashko L.B. // European Physical Journal B. - 2015. - V. 88, l. 11. - P. 1-12.

ISSN:
14346028
Type:
Article
Abstract:
Motivated by important paleoclimate applications we study a three dimensional model ofthe Quaternary climatic variations in the presence of stochastic forcing. It is shown thatthe deterministic system exhibits a limit cycle and two stable system equilibria. Wedemonstrate that the closer paleoclimate system to its bifurcation points (lying either inits monostable or bistable zone) the smaller noise generates small or large amplitudestochastic oscillations, respectively. In the bistable zone with two stable equilibria,noise induces a complex multimodal stochastic regime with intermittency of small and largeamplitude stochastic fluctuations. In the monostable zone, the small amplitude stochasticoscillations localized in the vicinity of unstable equilibrium appear along with the largeamplitude oscillations near the stable limit cycle. For the analysis of thesenoise-induced effects, we develop the stochastic sensitivity technique and use theMahalanobis metric in the three-dimensional case. To approximate the distribution ofrandom trajectories in Poincare sections, we use a method of confidence ellipses. Aspatial configuration of these ellipses is defined by the stochastic sensitivity and noiseintensity. The glaciation/deglaciation transitions going between two polar Earth’s stateswith the warm and cold climate become easier and quicker with increasing the noiseintensity. Our stochastic analysis demonstrates a near 100 ky saw-tooth type climate selffluctuations known from paleoclimate records. In addition, the enhancement of noiseintensity blurs the sharp climate cycles and reduces the glaciation-deglaciation periodsof the Earth’s paleoclimate. © 2015, EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.
Author keywords:
Statistical and Nonlinear Physics
Index keywords:
Earth (planet); Glacial geology; Stochastic models; Three dimensional computer graphics; Deterministic systems; Large amplitude oscillation; Paleoclimate records; Statistical and Nonlinear Physics; St
DOI:
10.1140/epjb/e2015-60659-2
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947255761&doi=10.1140%2fepjb%2fe2015-60659-2&partnerID=40&md5=98dd39f8a0c2c0d0e93a7b25964a1ff5
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 304
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947255761&doi=10.1140%2fepjb%2fe2015-60659-2&partnerID=40&md5=98dd39f8a0c2c0d0e93a7b25964a1ff5
Affiliations Department of Mathematical Physics, Ural Federal University, Lenina ave., 51, Ekaterinburg, Russian Federation
Author Keywords Statistical and Nonlinear Physics
References Saltzman, B., (1978) Adv. Geophys., 20, p. 183; Nicolis, C., (1993) J. Stat. Phys., 70, p. 3; Cramer, B.S., Wright, J.D., Kent, D.V., Aubry, M.-P., (2003) Paleoceanogr., 18, p. 1097; Alexandrov, D.V., Bashkirtseva, I.A., Ryashko, L.B., (2014) Tellus A, 66, p. 23454; Alexandrov, D.V., Bashkirtseva, I.A., Fedotov, S.P., Ryashko, L.B., (2014) Eur. Phys. J. B, 87, p. 227; Crowley, J.W., Katz, R.F., Huybers, P., Langmuir, C.H., Park, S.-H., (2015) Science, 347, p. 1237; Light, B., Grenfell, T.C., Perovich, D.K., (2008) J. Geophys. Res., 113, p. 03023; van den Broeke, M., Smeets, P., Ettema, J., Munneke, P.K., (2008) J. Geophys. Res., 113, p. 13105; Alexandrov, D.V., Bashkirtseva, I.A., Ryashko, L.B., (2015) Nonlin. Process. Geophys., 22, p. 197; Alexandrov, D.V., Bashkirtseva, I.A., Ryashko, L.B., (2015) Eur. Phys. J. B, 88, p. 106; B. Saltzman, Dynamical Paleoclimatology:Generalised Theory of Global Climate Change (Academic Press, San Diego, 2002); Ridgwell, A.J., Watso, A.J., (1999) Paleoclimatology, 14, p. 437; Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Stievenard, M., (1999) Nature, 399, p. 429; Pollard, D., Muszynski, I., Schneider, S.H., Thompson, S.L., (1990) Ann. Glaciol., 14, p. 247; Saltzman, B., Sutera, A., (1984) J. Atm. Sci., 41, p. 736; Lee, S.-Y., Poulsen, C.J., (2009) Quater. Sci. Rev., 28, p. 2663; Saltzman, B., Sutera, A., Evenson, A., (1981) J. Atm. Sci., 38, p. 494; Saltzman, B., Sutera, A., Hansen, A., (1982) J. Atm. Sci., 39, p. 2634; Saltzman, B., (1982) Tellus, 34, p. 97; De Saedeleer, B., Crucifix, M., Wieczorek, S., (2013) Clim. Dyn., 40, p. 273; W.Horstemke, R.Lefever, Noise-InducedTransitions (Springer,Berlin, 1984); V.S.Anishchenko,V.V.Astakhov, A.B.Neiman, T.E.Vadivasova, L.Schimansky-Geier, NonlinearDynamics of Chaotic and Stochastic Systems. Tutorial and ModernDevelopment (Springer-Verlag,Berlin, Heidelberg, 2007); L. Arnold, Random DynamicalSystems (Springer-Verlag,1998); Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F., (1998) Rev. Mod. Phys., 70, p. 223; M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D.Abbott, Stochastic Resonance: From Suprathreshold Stochastic Resonance toStochastic Signal Quantization (Cambridge University Press, 2008); Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L., (2004) Phys. Rep., 392, p. 321; Bashkirtseva, I., Ryashko, L., (2011) Chaos, 21, p. 047514; Bashkirtseva, I., Neiman, A.B., Ryashko, L., (2015) Phys. Rev. E, 91, p. 052920; Mahalanobis, P.C., (1936) Proc. Natl. Instit. Sci. India, 2, p. 49; Ashkenazy, Y., Baker, D.R., Gildor, H., (2005) J. Geophys. Res., 110, p. 2005; H.Risken, The Fokker-PlanckEquation: Methods of Solution and Applications(Springer, Berlin,Heidelberg, 1996); M.I.Freidlin, A.D.Wentzell, Random Perturbationsof Dynamical Systems (Springer, New York,1984)
Correspondence Address Alexandrov, D.V.; Department of Mathematical Physics, Ural Federal University, Lenina ave., 51, Russian Federation
Publisher springer berlin
Language of Original Document English
Abbreviated Source Title Eur. Phys. J. B
Source Scopus