Neural networks for CO2 profile retrieval from the data of GOSAT/TANSO-FTS / Gribanov K.G., Imasu R., Zakharov V.I. // Atmospheric and Oceanic Optics. - 2010. - V. 23, l. 1. - P. 42-47.

ISSN:
10248560
Type:
Article
Abstract:
The feasibility of the retrieval of CO2 vertical profiles and its column-averaged concentration by reflected solar radiation measured by the TANSO-FTS sensor onboard the GOSAT satellite is demonstrated. Model spectra in the 0.76-µm O2 band and CO2 bands near 1.6 and 2.06 µm were used to train the neural network for CO2 retrieval. Separate neural networks were developed for each of the four scanning angles; the solar zenith angle was considered as a continuous variable. An accuracy of better than 1 ppm for column-averaged values and better than 4 ppm for the surface CO2 concentration were achieved. A 1: 300 noise level in the spectra was set for all spectral ranges. © 2010, Pleiades Publishing, Ltd.
Author keywords:
Index keywords:
нет данных
DOI:
10.1134/S1024856010010094
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874308076&doi=10.1134%2fS1024856010010094&partnerID=40&md5=a80f228bb68e5351889f979196efb3db
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874308076&doi=10.1134%2fS1024856010010094&partnerID=40&md5=a80f228bb68e5351889f979196efb3db
Affiliations Ural State University, pr. Lenina 51, Yekaterinburg, Russian Federation; Center for Climate System Research, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, Japan
References Tans, P.P., Fung, I.Y., Takahashi, T., Observation Constraints on the Global Atmospheric CO2 Budget (1990) Science, 247, pp. 1431-1438; Rayner, P.J., Brien, D.M.O., The Utility of Remotely Sensed CO2 Concentration Data in Surface Source Inversions (2001) Geophys. Res. Lett., 28, pp. 175-178; Http://www.gosat.nies.go.jp/eng/GOSAT_pamphlet_en.pdf, (20.04.2009); Hamazaki, T., Kaneko, Y., Kuze, “Carbon Dioxide Monitoring From the GOSAT Satellite,” in Proc. of the XXth ISPRS Congress, 12-23 July, Istanbul (2004) Turkey, pp. 225-227; Gribanov, K.G., Zakharov, V.I., Tashkun, S.A., Tyuterev, V.G., A New Software Tool for Radiative Transfer Calculations and Its Application to IMG/ADEOS Data (2001) J. Quant. Spectrosc. Radiat. Transf., 68, pp. 435-451; Tomasi, C., Vitale, V., Petkov, B., Lupi, A., Cacciari, A., Improved Algorithm for Calculations of Ray-leigh_scattering Optical Depth in Standard Atmospheres (2005) Appl. Opt., 44, pp. 3320-3341; Rothman, L.S., Jacquemart, D., Barbe, A., Benner, D.C., Birk, M., Brown, L.R., Carleer, M.R., Wagner, G., The HITRAN 2004 Molecular Spectroscopic Database (2005) J. Quant. Spectrosc. Radiat. Transfer., 96, pp. 139-204; Roujean, J.-L., Leroy, M., Dechamps, P.-Y., A Bidirectional Reflectance Model of the Earth’s Surface for the Correction of Remote Sensing Data (1992) J. Geophys. Res. D, 97, pp. 20455-20468; Rahman, H., Verstraete, M.M., Pinty, B., Coupled Surface-Atmosphere Reflectance Model. 1. Model Description and Inversion on Synthetic Data (1993) J. Geo-phys. Res. D, 98, pp. 20779-20789; Rahman, H., Pinty, B., Verstraete, M.M., Coupled Surface-Atmosphere Reflectance (CSAR) Model 2. Semiempirical Surface Model Usable With NOAA Advanced Very High Resolution Radiometer Data (1993) J. Geophys. Res. D, 98, pp. 20791-20801; http://rtweb.aer.com, (01.09.2008); Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures, Ed. By J. Lenoble (A. Deepak Publ., Hampton, Virginia USA, 1985); Chevallier, F., Chedin, A., Cheruy, F., Morcrette, J.J., TIGR-like Atmospheric-profile Databases for Accurate Radiative-Flux Computation (2000) Quart. J. R. Mete-orol. Soc., 126 (563), pp. 777-785; “GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project - Carbon Dioxide,” CD-ROM (NOAA CMDL, Boulder, Colorado, 2005), Also Available on Internet Via Anonymous FTP to ftp.cmdl.noaa. gov, path: Ccg/co2/GLOBALVIEW; Schmidt, U., Khedim, A., In Situ Measurements of Carbon Dioxide in the Winter Arctic Vortex and at Midlatitudes: An Indicator of the ‘Age’ of Stratospheric Air (1991) Geophys. Res. Lett., 18, pp. 763-766; Engelen, R.J., Denning, A.S., Gurney, K.R., Stephens, G.L., Global Observations of the Carbon Budget 1. Expected Satellite Capabilities for Emission Spectroscopy in the EOS and NPOESS Eras (2001) J. Geophys. Res. D, 106, pp. 20055-20068; Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning Internal Representations by Error Propagation (1986) Parallel Distributed Processing: Explorations in the Macrostructure of Cognition, pp. 318-362. , Rumelhart D. E., McClelland J. L., (eds), MIT, Cambridge; Platt, U., Perner, D., Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy (1983) Optical and Laser Remote Sensing, pp. 95-105. , Killinger D. A., Mooradien A., (eds), Springer, New York; Minu, M., Programming, M., (1990) Theory and Algoritms, , Nauka: Moscow
Correspondence Address Gribanov, K.G.; Ural State University, pr. Lenina 51, Russian Federation; email: kgribanov@remotesensing.ru
Publisher Pleiades Publishing
Language of Original Document English
Abbreviated Source Title Atmos. Ocean. Opt.
Source Scopus