References |
Tans, P.P., Fung, I.Y., Takahashi, T., Observation Constraints on the Global Atmospheric CO2 Budget (1990) Science, 247, pp. 1431-1438; Rayner, P.J., Brien, D.M.O., The Utility of Remotely Sensed CO2 Concentration Data in Surface Source Inversions (2001) Geophys. Res. Lett., 28, pp. 175-178; Http://www.gosat.nies.go.jp/eng/GOSAT_pamphlet_en.pdf, (20.04.2009); Hamazaki, T., Kaneko, Y., Kuze, “Carbon Dioxide Monitoring From the GOSAT Satellite,” in Proc. of the XXth ISPRS Congress, 12-23 July, Istanbul (2004) Turkey, pp. 225-227; Gribanov, K.G., Zakharov, V.I., Tashkun, S.A., Tyuterev, V.G., A New Software Tool for Radiative Transfer Calculations and Its Application to IMG/ADEOS Data (2001) J. Quant. Spectrosc. Radiat. Transf., 68, pp. 435-451; Tomasi, C., Vitale, V., Petkov, B., Lupi, A., Cacciari, A., Improved Algorithm for Calculations of Ray-leigh_scattering Optical Depth in Standard Atmospheres (2005) Appl. Opt., 44, pp. 3320-3341; Rothman, L.S., Jacquemart, D., Barbe, A., Benner, D.C., Birk, M., Brown, L.R., Carleer, M.R., Wagner, G., The HITRAN 2004 Molecular Spectroscopic Database (2005) J. Quant. Spectrosc. Radiat. Transfer., 96, pp. 139-204; Roujean, J.-L., Leroy, M., Dechamps, P.-Y., A Bidirectional Reflectance Model of the Earth’s Surface for the Correction of Remote Sensing Data (1992) J. Geophys. Res. D, 97, pp. 20455-20468; Rahman, H., Verstraete, M.M., Pinty, B., Coupled Surface-Atmosphere Reflectance Model. 1. Model Description and Inversion on Synthetic Data (1993) J. Geo-phys. Res. D, 98, pp. 20779-20789; Rahman, H., Pinty, B., Verstraete, M.M., Coupled Surface-Atmosphere Reflectance (CSAR) Model 2. Semiempirical Surface Model Usable With NOAA Advanced Very High Resolution Radiometer Data (1993) J. Geophys. Res. D, 98, pp. 20791-20801; http://rtweb.aer.com, (01.09.2008); Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures, Ed. By J. Lenoble (A. Deepak Publ., Hampton, Virginia USA, 1985); Chevallier, F., Chedin, A., Cheruy, F., Morcrette, J.J., TIGR-like Atmospheric-profile Databases for Accurate Radiative-Flux Computation (2000) Quart. J. R. Mete-orol. Soc., 126 (563), pp. 777-785; “GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project - Carbon Dioxide,” CD-ROM (NOAA CMDL, Boulder, Colorado, 2005), Also Available on Internet Via Anonymous FTP to ftp.cmdl.noaa. gov, path: Ccg/co2/GLOBALVIEW; Schmidt, U., Khedim, A., In Situ Measurements of Carbon Dioxide in the Winter Arctic Vortex and at Midlatitudes: An Indicator of the ‘Age’ of Stratospheric Air (1991) Geophys. Res. Lett., 18, pp. 763-766; Engelen, R.J., Denning, A.S., Gurney, K.R., Stephens, G.L., Global Observations of the Carbon Budget 1. Expected Satellite Capabilities for Emission Spectroscopy in the EOS and NPOESS Eras (2001) J. Geophys. Res. D, 106, pp. 20055-20068; Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning Internal Representations by Error Propagation (1986) Parallel Distributed Processing: Explorations in the Macrostructure of Cognition, pp. 318-362. , Rumelhart D. E., McClelland J. L., (eds), MIT, Cambridge; Platt, U., Perner, D., Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy (1983) Optical and Laser Remote Sensing, pp. 95-105. , Killinger D. A., Mooradien A., (eds), Springer, New York; Minu, M., Programming, M., (1990) Theory and Algoritms, , Nauka: Moscow |