Fast infinitesimal Fourier transform for signal and image processing via multiparametric and fractional Fourier transforms / Ostheimer E., Labunets V., Martyugin S. // CEUR Workshop Proceedings. - 2015. - V. 1452, l. . - P. 19-27.

ISSN:
16130073
Type:
Conference Paper
Abstract:
The fractional Fourier transforms (FrFTs) is one-parametric family of unitary transformations {Fα}2πα=0. FrFTs found a lot of applications in signal and image processing. The identical and classical Fourier transformations are both the special cases of the FrFTs. They correspond to α = 0 (F0 = I) and α = π/2 (Fπ/2 = F), respectively. Up to now, the fractional Fourier spectra Fαi = Fαi {f}, i = 1,2,..., M, has been digitally computed using classical approach based on the fast discrete Fourier transform. This method maps the N samples of the original function f to the N samples of the set of spectra {Fαi}Mi=1, which requires MN (2 + log2 N) multiplications and MN log2 N additions. This paper develops a new numerical algorithm, which requires 2MN multiplications and 3MN additions and which is based on the infinitesimal Fourier transform.
Author keywords:
Fast fractional Fourier transform; Infinitesimal Fourier transform; Schrodinger operator; Signal and image analysis
Index keywords:
Algorithms; Digital signal processing; Discrete Fourier transforms; Fourier optics; Image analysis; Image processing; Mines; Classical approach; Fourier transformations; Fractional fourier; Fractional
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84950105035&partnerID=40&md5=f1ac93394dc5c83b3032bbd0a12b0207
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84950105035&partnerID=40&md5=f1ac93394dc5c83b3032bbd0a12b0207
Affiliations Capricat LLC, 1340 S., Ocean Blvd., Pompano Beach, FL, United States; Ural Federal University, pr. Mira, 19, Yekaterinburg, Russian Federation; SPA Automatics, Named after Academician N.A. Semikhatov, Mamina Sibiryaka, 145, Yekaterinburg, Russian Federation
Author Keywords Fast fractional Fourier transform; Infinitesimal Fourier transform; Schrodinger operator; Signal and image analysis
References Mitra, S.K., (2001) Nonlinear Image Processing. Academic Press Series in Communications, p. 248. , Networking, and Multimedia, San Diego, New York; Wiener, N., Hermitian polynomials and Fourier analysis (1929) J. Math. Phys., 8, pp. 70-73; Condon, E.U., Immersion of the Fourier transform in a continuous group of functional transforms (1937) Proc. Nat. Acad. Sci., 23, pp. 158-164; Kober, H., Wurzeln aus der Hankel- und Fourier und anderen stetigen Transformationen (1939) Quart. J. Math. Oxford Ser., 10, pp. 45-49; Bargmann, V., On a Hilbert space of analytic functions and an associated integral transform. Part 1 (1961) Commun. Pure Appl. Math., 14, pp. 187-214; Namias, V., The fractional order Fourier transform and its application to quantum mechanics (1980) J. Inst. Math. Appl., 25, pp. 241-265; McBride, A.C., Kerr, F.H., On Namias' fractional Fourier transforms (1987) IMA J. Appl. Math., 39, pp. 159-265; Ozaktas, H.M., Mendlovic, D., Fourier transform of fractional order and their optical interpretation (1993) Opt. Commun., 110, pp. 163-169; Lohmann, A.W., Image rotation, Wigner rotation, and the fractional order Fourier transform (1993) J. Opt. Soc. Am. A., 10, pp. 2181-2186; Almeida, L.B., The fractional Fourier transform and time-frequency representation (1994) IEEE Trans. Sig. Proc., 42, pp. 3084-3091; Ozaktas, H.M., Zalevsky, Z., Kutay, M.A., (2001) The Fractional Fourier Transform, , Wiley, Chichester; Rundblad-Labunets, E., Labunets, V., Astola, J., Egiazarian, K., Fast fractional Fourier-Clifford transforms (1999) Second International Workshop on Transforms and Filter Banks, 5, pp. 376-405. , Tampere, Finland, TICSP Series; Rundblad, E., Labunets, V., Astola, J., Egiazarian, K., Polovnev, S., Fast fractional unitary transforms (1999) Proc. of Conf. Computer Science and Information Technologies, pp. 223-226. , Yerevan, Armenia; Creutzburg, R., Rundblad, E., Labunets, V., Fast algorithms for fractional Fourier transforms (1999) Proc. of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, pp. 383-387. , Antalya, Turkey, June 20-23; Rundblad, E., Labunets, V., Astola, J., Egiazarian, K., Smaga, A., Fast fractional Fourier and Hartley transforms (1999) Proc. of the 1999 Finnish Signal Processing Symposium, pp. 291-297. , Oulu, Finland; Labunets, E., Labunets, V., Fast fractional Fourier transforms (1998) Proc. of Eusipco-98, pp. 1757-1760. , Rhodes, Greece, 8-11 Sept; Goldstein, J., (1985) Semigroups of Linear Operators and Applications, , Oxford U. Press, New York; Griffiths, R.B., Consistent Quantum Theory, , http://www.cambridge.org; Candan, C., (1998) The Discrete Fractional Fourier Transform, , M. S. thesis, Bilkent Univ., Ankara, Turkey
Editors Panchenko A.Labunets V.G.Spirin N.Konstantinova N.Panchenko A.Delhibabu R.Khachay M.Y.
Sponsors et al.;Exactpro;GraphiCon;IT Centre;Krasovsky Institute of Mathematics and Mechanics;SKB Kontur;Ural Federal University
Publisher CEUR-WS
Conference name 4th International Conference on Analysis of Images, Social Networks and Texts, AIST 2015
Conference date 9 April 2015 through 11 April 2015
Conference code 116775
Language of Original Document English
Abbreviated Source Title CEUR Workshop Proc.
Source Scopus