Characterization of LiMn2O4 cathodes by electrochemical strain microscopy / Alikin D.O., Ievlev A.V., Luchkin S.Y., Turygin A.P., Shur V.Y., Kalinin S.V., Kholkin A.L. // Applied Physics Letters. - 2016. - V. 108, l. 11.

ISSN:
00036951
Type:
Article
Abstract:
Electrochemical strain microscopy (ESM) is a scanning probe microscopy (SPM) method in which the local electrodiffusion is probed via application of AC voltage to the SPM tip and registration of resulting electrochemical strain. Here, we implemented ESM to measure local strain in bulk LiMn2O4 cathodes of a commercial Li-battery in different states of charge to investigate distribution of Li-ion mobility and concentration. Ramped AC ESM imaging and voltage spectroscopy were used to find the most reliable regime of measurements allowing separating and diminishing different contributions to ESM. This is not a trivial task due to complex geometry of the sample and various obstacles resulting in less predictable contributions of different origins into ESM response: Electrostatic tip-surface interactions, charge injection, electrostriction, and flexoelectricity. Understanding and control of these contributions is an important step towards quantitative interpretation of ESM data. © 2016 AIP Publishing LLC.
Author keywords:
Index keywords:
Electrodes; Lithium-ion batteries; Scanning probe microscopy; Complex geometries; Different origins; Electrochemical strain; Electrochemical strain microscopies; Electrodiffusion; Quantitative interpr
DOI:
10.1063/1.4943944
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961736637&doi=10.1063%2f1.4943944&partnerID=40&md5=9d0b4c030b4c9a5d43a40bf7684f0bf9
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 113106
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961736637&doi=10.1063%2f1.4943944&partnerID=40&md5=9d0b4c030b4c9a5d43a40bf7684f0bf9
Affiliations Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., Ekaterinburg, Russian Federation; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
References Kalinin, S.V., Balke, N., Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: Status and perspectives (2010) Adv. Mater., 22, pp. E193-E209; Dunn, B., Liu, P., Meng, S., Nanoscience and nanotechnology in next generation lithium batteries (2013) Nanotechnology, 24; Morozovska, A.N., Eliseev, E.A., Balke, N., Kalinin, S.V., Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms (2010) J. Appl. Phys., 108; Morozovska, A.N., Eliseev, E.A., Kalinin, S.V., Electromechanical probing of ionic currents in energy storage materials (2010) Appl. Phys. Lett., 96; Kalinin, S.V., Morozovska, A.N., Electrochemical strain microscopy of local electrochemical processes in solids: Mechanism of imaging and spectroscopy in the diffusion limit (2014) J. Electroceram., 32, pp. 51-59; Wilson, J.R., Cronin, J.S., Barnett, S.A., Harris, S.J., Measurement of three-dimensional microstructure in a LiCoO2 positive electrode (2011) J. Power Sources, 196, pp. 3443-3447; Amanieu, H.Y., Rosato, D., Sebastiani, M., Massimi, F., Lupascu, D.C., Mechanical property measurements of heterogeneous materials by selective nanoindentation: Application to LiMn2O4 cathode (2014) Mater. Sci. Eng. A, 593, pp. 92-102; Luchkin, S.Y., Romanyuk, K., Ivanov, M., Kholkin, A.L., Li transport in fresh and aged LiMn2O4 cathodes via electrochemical strain microscopy (2015) J. Appl. Phys., 118; Amanieu, H.-Y., Thai, H.N.M., Luchkin, S.Yu., Rosato, D., Lupascu, D.C., Keip, M.-A., Schröder, J., Kholkin, A.L., Electrochemical strain microscopy time spectroscopy: Model and experiment on LiMn2O4 (2015) J. Appl. Phys., 118; Li, J., Li, J.-F., Yu, Q., Chen, Q.N., Xie, S., Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems (2015) J. Mater., 1, pp. 3-21; Amanieu, H.-Y., Aramfard, M., Rosato, D., Batista, L., Rabe, U., Lupascu, D.C., Mechanical properties of commercial LixMn2O4 cathode under different states of charge (2015) Acta Mater., 89, pp. 153-162; Jesse, S., Kalinin, S.V., Proksch, R., Baddorf, A.P., Rodriguez, B.J., The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale (2007) Nanotechnology, 18; Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., Jesse, S., Measuring oxygen reduction/evolution reactions on the nanoscale (2011) Nat. Chem., 3, pp. 707-713; Kim, Y., Morozovska, A.N., Kumar, A., Jesse, S., Eliseev, E.A., Alibart, F., Strukov, D., Kalinin, S.V., Ionically mediated electromechanical hysteresis in transition metal oxides (2012) ACS Nano, 6, pp. 7026-7033; Jesse, S., Kalinin, S.V., Band excitation in scanning probe microscopy: Sines of change (2011) J. Phys. D: Appl. Phys., 44; Eliseev, E.A., Morozovska, A.N., Ievlev, A.V., Balke, N., Maksymovych, P., Tselev, A., Kalinin, S.V., Electrostrictive and electrostatic responses in contact mode voltage modulated scanning probe microscopies (2014) Appl. Phys. Lett., 104; Goodenough, J.B., Park, K.S., The Li-ion rechargeable battery: A perspective (2013) J. Am. Chem. Soc., 135, pp. 1167-1176; Sekhon, J.S., Aggarwal, L., Sheet, G., Voltage induced local hysteretic phase switching in silicon (2014) Appl. Phys. Lett., 104; Tselev, A., Morozovska, A.N., Udod, A., Eliseev, E.A., Kalinin, S.V., Self-consistent modeling of electrochemical strain microscopy of solid electrolytes (2014) Nanotechnology, 25; Da Cunha Rodrigues, G., Zelenovskiy, P., Romanyuk, K., Luchkin, S., Kopelevich, Y., Kholkin, A., Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates (2015) Nat. Commun., 6, p. 7572; http://dx.doi.org/10.1063/1.4943944, See supplementary material at E-APPLAB-108-041611 for Figure 1 which shows topography evolution under the DC voltage pulses. Figure 2 shows application of contour analysis to the ESM image of distinct particle. Figure 3 shows eigen vectors and main components obtained by PCA analysis; Berg, H., Göransson, K., Noläng, B., Thomas, J.O., Electronic structure and stability of the LixMn2O4 (0 < x < 2) system (1999) J. Mater. Chem., 9, pp. 2813-2820; Seber, G.A.F., (2004) Multivariate Observations, , (John Wiley & Sons); Bonnet, N., Multivariate statistical methods for the analysis of microscope image series: Applications in materials science (1998) J. Microsc., 190, pp. 2-18; Jesse, S., Kalinin, S.V., Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy (2009) Nanotechnology, 20; Ievlev, A.V., Susner, M.A., McGuire, M.A., Maksymovych, P., Kalinin, S.V., (2015) ACS Nano, 9, pp. 12442-12450; Iberi, V., Ievlev, A.V., Vlassiouk, I., Jesse, S., Kalinin, S.V., Joy, D.C., Rondinone, A.J., Ovchinnikova, O.S., Graphene engineering by neon ion beams (2016) Nanotechnology, 27
Publisher American Institute of Physics Inc.
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus