Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric / Walker J., Simons H., Alikin D.O., Turygin A.P., Shur V.Y., Kholkin A.L., Ursic H., Bencan A., Malic B., Nagarajan V., Rojac T. // Scientific Reports. - 2016. - V. 6, l. .

ISSN:
20452322
Type:
Article
Abstract:
Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced transition of an anti-polar intermediate phase. We show that intermediate phases play an important role in the macroscopic strain response, and may have potential to enhance electromechanical properties at polar-to-non-polar MPBs. © 2016, Nature Publishing Group. All rights reserved.
Author keywords:
Index keywords:
нет данных
DOI:
10.1038/srep19630
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955058450&doi=10.1038%2fsrep19630&partnerID=40&md5=a25a8bfd633aa72533ea3ac7e10788a5
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 19630
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955058450&doi=10.1038%2fsrep19630&partnerID=40&md5=a25a8bfd633aa72533ea3ac7e10788a5
Affiliations Electronic Ceramics Department, Jozef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark; Nanofer Laboratory, Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; CICECO, Department of Materials and Ceramics Engineering, University of Aveiro, Aveiro, Portugal; School of Materials Science and Engineering, University of New South Wales, Sydney, Australia
Funding Details 16-32-60083-mol-a-dk, RFBR, Federación Española de Enfermedades Raras; LP 0991794, ARC, Federación Española de Enfermedades Raras; UID RFMEFI58715 x 0022, Federación Española de Enfermedades Raras; FCT, Federación Española de Enfermedades Raras; FEDER, Federación Española de Enfermedades Raras; MEC, Federación Española de Enfermedades Raras
References Kutnjak, Z., Petzelt, J., Blinc, R., The giant electromechanical response in ferroelectric relaxors as a critical phenomenon (2006) Nature, 441, pp. 956-959; Fu, H., Cohen, R.E., Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics (2000) Nature, 403, pp. 281-283; Damjanovic, D., Comments on origins of enhanced piezoelectric properties in ferroelectrics (2009) IEEE TUFFC Trans. Ultra. Ferro. Freq. Cont., 56, pp. 1574-1585; Ahart, M., Origin of morphotropic phase boundaries in ferroelectrics (2008) Nature, 451, pp. 545-548; Uchino, K., (2009) Ferroelectric Devices, pp. 161-232. , 2nd edn., Ch 7, Marcel Dekker, Inc; Saito, Y., Lead-free piezoceramics (2004) Nature, 432, pp. 84-87; Wang, X., Giant piezoelectricity in potassium-sodium niobate lead-free ceramics (2014) J. Am. Chem. Soc., 136, pp. 2905-2910; Wu, J., Xiao, D., Zhu, J., Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries (2015) Chem. Rev., 115, pp. 2559-2595; Rodel, J., Prospective on the development of lead-free peizoceramics (2009) J. Am. Ceram. Soc., 92 (6), pp. 1153-1178; Rodel, J., Webber, K.G., Dittmer, R., Jo, W., Kimura, M., Damjanovic, D., Transferring lead-free piezoelectric ceramics into application (2015) J. Euro. Ceram. Soc., 35, pp. 1659-1681; Damjanovic, D., A morphotropic phase boundary system based on polarization rotation and polarization extension (2010) Appl. Phys. Lett., 97; Goldschmidt, V.M., Skrifer Norske Videnskaps-Akad (1926) Oslo, I. Mat.-Nat., , K1. 8; Noheda, B., Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3 (2000) Phys. Rev. B, 61, pp. 8687-8695; Fujino, S., Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite (2008) Appl. Phys. Let., 92; Kan, D., Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3 (2010) Adv. Funct. Mater., 20, pp. 1108-1115; Moreau, J.M., Michel, C., Gerson, R., James, W.J., Ferroelectric BiFeO3 X-ray and neutron diffraction study (1971) J. Phys. Chem. Solids, 32, pp. 1315-1320; Wang, J., Epitaxial BiFeO3 multiferroic thin film heterostructures (2003) Science, 299, pp. 1719-1722; Lebeugle, D., Colson, D., Forget, A., Viret, M., Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields (2007) Appl. Phys. Lett., 91; Sosnowska, I., Neumaier, T.P., Steichele, E., Spiral magnetic ordering in bismuth ferrite (1982) J. Phys. C: Sol. Stat. Phys., 15, pp. 4835-4846; Catalan, G., Scott, J.F., Physics and applications of bismuth ferrite (2009) Adv. Mater, 21; Rojac, T., BiFeO3 ceramics: Processing, electrical, and electromechanical properties (2014) J. Am. Ceram. Soc., 97, pp. 1993-2011; Tsurumi, T., Kumano, Y., Ohashi, N., Takenaka, T., Fukunaga, O., 90° Domain reorientation and electric-field-induced strain of tetragonal lead zirconate titanate ceramics (1997) Jap. J. Appl. Phys., 36, pp. 5970-5975; Hoffmann, M.J., Hammer, M., Endriss, A., Lupascu, D.C., Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics (2001) Acta Mater, 49, pp. 1301-1310; Chen, Y.-H., Viehland, D., Relaxational polarization dynamics in soft ferroelectrics (2000) Appl. Phys. Lett., 77, pp. 133-135; Kumar, P., Singh, S., Thakur, O.P., Prakash, C., Goel, T.C., Study of lead magnesium niobate-lead titanate ceramics for piezoactuator applications (2004) Jap. J. Appl. Phys., 43, pp. 1501-1506; Karimi, S., Reaney, I.M., Han, Y., Pokorny, J., Sterianou, I., Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics (2009) J. Mat. Sci., 44, pp. 5102-5112; Karimi, S., Reaney, I.M., Levin, I., Sterianou, I., Nd-doped BiFeO3 ceramics with antipolar order (2009) Appl. Phys. Lett., 94; Borisevich, A.Y., Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction (2012) Nature Comm., 3; Yang, C.-H., Kan, D., Takeuchi, I., Nagarajan, V., Seidel, J., Doping BiFeO3: Approaches and enhanced functionality (2012) Phys. Chem. Chem. Phys., 14, pp. 15953-15962; Cheng, C.J., Borisevich, A.Y., Kan, D., Takeuchi, I., Nagarajan, V., Nanoscale structural and chemical properties of antipolar clusters in Sm-doped BiFeO3 ferroelectric epitaxial thin films (2010) Chem. Mater., 22, pp. 2588-2596; Kubota, M., Sequential phase transitions in Sm substituted BiFeO3 (2011) Jap. J. Appl. Phys, 50; Walker, J., Synthesis-phase-composition relationship and high electric-field-induced electromechanical behavior of samarium-modified BiFeO3 ceramics (2015) Acta Mater., 83, pp. 149-159; Rojac, T., Ursic, H., Bencan, A., Malic, B., Damjanovic, D., Mobile domain walls as a bridge between nanoscale conductivity and macroscopic electromechanical response (2015) Adv. Funct. Mater., 25, pp. 2099-2108; Soergel, E., Piezoresponse force microscopy (PFM) (2011) J. Phys. D: Appl. Phys., 44; Cheng, C.J., Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films (2009) Phys. Rev. B, 80; Damjanovic, D., Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics (1998) Rep. Prog. Phys., 61, pp. 1267-1324; Rojac, T., Kosec, M., Damjanovic, D., Large electric-field induced strain in BiFeO3 ceramics (2011) J. Am. Ceram. Soc., 94, pp. 4108-4111; Rojac, T., Kosec, M., Budic, B., Setter, N., Damjanovic, D., Strong ferroelectric domain-wall pinning in BiFeO3 ceramics (2010) J. Appl. Phys., 108; Tan, X., Ma, C., Frederick, J., Beckman, S., Webber, K.G., The antiferroelectric 虠 ferroelectric phase transition in lead-containing and lead-free perovskite ceramics (2011) J. Am. Ceram. Soc., 94, pp. 4091-4107; Schenk, T., About the deformation of ferroelectric hystereses (2014) Appl. Phys. Rev., 1; Carl, K., Hardtl, K.H., Electrical after-effects in Pb(Ti, Zr)O3 ceramics (1978) Ferroelectrics, 17, pp. 473-486; Franzbach, D.J., Electric-field-induced phase transitions in co-doped Pb(Zr1-xTix)O3 at the morphotropic phase boundary (2014) Sci. Tech. Adv. Mater., 15; Zhang, S.-T., Kounga, A.B., Aulbach, E., Ehrenberg, H., Rödel, J., Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system (2007) Appl. Phys. Lett., 91; Zeches, R.J., A strain-driven morphotropic phase boundary in BiFeO3 (2009) Science, 326, pp. 977-980; Zhang, J.X., Large field-induced strains in a lead-free piezoelectric material (2011) Nature Nano, 6, pp. 98-102; Park, S.-E., Pan, M.-J., Markowski, K., Yoshikawa, S., Cross, L.E., Electric field induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics (1997) J. Appl. Phys., 82, pp. 1798-1803; Guennou, M., Multiple high-pressure phase transitions in BiFeO3 (2011) Phys. Rev. B, 84
Correspondence Address Walker, J.; Electronic Ceramics Department, Jozef Stefan InstituteSlovenia; email: julian.walker@ijs.si
Publisher Nature Publishing Group
Language of Original Document English
Abbreviated Source Title Sci. Rep.
Source Scopus