Piezoelectric properties of diphenylalanine microtubes prepared from the solution / Vasilev S., Zelenovskiy P., Vasileva D., Nuraeva A., Shur V.Y., Kholkin A.L. // Journal of Physics and Chemistry of Solids. - 2016. - V. 93, l. . - P. 68-72.

ISSN:
00223697
Type:
Article
Abstract:
Biomimetic self-assembling peptides form a variety of structures that can be used for the fabrication of functional devices. We are witnessing the emergence of a new era of bionanotechnology that opens up new possibilities for novel electronic, photonic and energy functionalities based on supramolecular green and lightweight structures. In this work, we study the emergent piezoelectric properties of linear dipeptide diphenylalanine (FF) that can self-assemble in the shape of microtubes. The matrix of piezoelectric coefficients is derived for the first time based on the hexagonal symmetry of FF structures and different configurations of the tubes are tested by the advanced Piezoresponse Force Microscopy (PFM). Strong piezoelectric anisotropy of piezoelectric coefficients is explained by the self-assembled structure of FF peptides. Possible applications of piezoelectric microtubes in functional devices are discussed. © 2016 Elsevier Ltd. All rights reserved. Graphical abstract fx1.
Author keywords:
Diphenylalanine; Microtube; Piezoelectricity; Piezoresponse force microscopy
Index keywords:
Biomimetics; Crystallography; Peptides; Scanning probe microscopy; Diphenylalanine; Microtube; Piezoelectric anisotropy; Piezoelectric coefficient; Piezoelectric property; Piezoresponse force microsco
DOI:
10.1016/j.jpcs.2016.02.002
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959036717&doi=10.1016%2fj.jpcs.2016.02.002&partnerID=40&md5=643ed29ebf5ccb286ef917805222a88b
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959036717&doi=10.1016%2fj.jpcs.2016.02.002&partnerID=40&md5=643ed29ebf5ccb286ef917805222a88b
Affiliations Institute of Natural Sciences, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, Russian Federation; Physics Department, CICECO, Materials Institute of Aveiro, University of Aveiro, Aveiro, Portugal
Author Keywords Diphenylalanine; Microtube; Piezoelectricity; Piezoresponse force microscopy
References Lehn, M., Toward self-organization and complex matter (2002) Science, 295, pp. 2400-2403; Chen, C.-L., Rosi, N.L., Peptide-based methods for the preparation of nanostructured inorganic materials (2010) Angew. Chem. Int. Ed., 49, pp. 1924-1942; Hauser, C.A.E., Zhang, S., Design of self-assembling peptide nanofiber biological materials (2010) Chem. Soc. Rev., 39, pp. 2780-2790; Cavalli, S., Albericio, F., Kros, A., Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience (2010) Chem. Soc. Rev., 39, pp. 241-263; Garg, A., Craig, J.A., Kokkoli, E., Rexeisen, E.L., Mardilovich, A., Wedekind, A., Self-assembly and applications of biomimetic and bioactive peptideamphiphiles (2006) Soft Matter, 2, pp. 1015-1024; Gazit, E., Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization (2007) Chem. Soc. Rev., 36, pp. 1263-1269; Adler-Abramovich, L., Gazit, E., The physical properties of supramolecular peptide assemblies: From building block association to technological applications (2014) Chem. Soc. Rev., 43, pp. 6881-7238; Handelman, A., Beker, P., Amdursky, N., Rosenman, G., Physics and engineering of peptide supramolecular nanostructures (2014) Phys. Chem. Chem. Phys., 14, pp. 6391-6408; Seabra, A.B., Durán, N., Biological applications of peptides nanotubes: An overview (2013) Peptides, 39, pp. 47-54; Kholkin, A.L., Amdursky, N., Bdikin, I., Rosenman, G., Gazit, E., Strong piezoelectricity in bioinspired peptide nanotubes (2010) ACS Nano, 4, pp. 610-614; Zelenovskiy, P.S., Shur, V.Y., Vasilev, S.G., Vasileva, D.S., Nuraeva, A.S., Alikin, D.O., Krasnov, A.S., Kholkin, A.L., Morphology and piezoelectric properties of diphenylalanine microcrystals grown from methanol-water solution (2015) Ferroelectrics, 475, pp. 127-134; Kholkin, A.L., Bdikin, I.K., Kiselev, D.A., Shvartsman, V.V., Kim, S.-H., Nanoscale characterization of polycrystalline ferroelectric materials for piezoelectric applications (2007) J. Electroceram., 19, pp. 81-94; Balke, N., Bdikin, I.K., Kalinin, S.V., Kholkin, A.L., Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: State of the art and prospects for the future (2009) J. Am. Ceram. Soc., 92, pp. 1629-1647; Bosne, E.D., Heredia, A., Kopyl, S., Karpinsky, D.V., Pinto, A.G., Kholkin, A.L., Piezoelectric resonators based on self-assembled diphenylalanine microtubes (2013) Appl. Phys. Lett., 102, p. 073504; Nye, J.F., (1985) Physical Properties of Crystals: Their Representation by Tensors and Matrices, , Oxford Science Publications USA; Hu, H., Larson, R.G., (2005) Langmuir, 21, p. 3972; Nuraeva, A., Vasilev, S., Vasileva, D., Zelenovskiy, P., Esin, A., Kopyl, S., Romanyuk, K., Kholkin, A.L., Cryst. Growth Des., , under review; Gorbitz, C.H., The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide (2006) Chem. Commun., 22, pp. 2332-2334; Liu, E., Blanpain, B., Celis, J.P., (1996) Wear, 192, pp. 141-145; Yoo, H., Bae, C., Kim, M., Hong, S., No, K., Kim, Y., Shin, H., Visualization of three dimensional domain structures in ferroelectric PbTiO3 nanotubes (2013) Appl. Phys. Lett., 103, p. 022902; Nath, R., Hong, S., Klug, J.A., Imre, A., Bedzyk, M.J., Katiyar, R.S., Auciello, O., Effects of cantilever buckling on vector piezoresponse force microscopy imaging of ferroelectric domains in BiFeO3 nanostructures (2010) Appl. Phys. Lett., 96, p. 163101; Bystrov, V.S., Bdikin, I., Heredia, A., Pullar, R.C., Mishina, E., Sigov, A.S., Kholkin, A.L., (2012) "piezoelectricity and Ferroelectricity in Biomaterials: From Proteins to Self-assembled Peptide Nanotubes", in Piezoelectric Nanomaterials for Biomedical Applications, pp. 187-212. , G. Ciofani, A. Menciassi, Springer Verlag Berlin-Heidelberg; Choi, H., Hong, S., Kim, Y., Kim, M., Sung, T.-H., Shin, H., No, K., Observation of mechanical fracture and corresponding domain structure changes of polycrystalline PbTiO3 nanotubes (2011) Phys. Stat. Sol-RRL, 5, pp. 59-61; Liu, J.S., Zeng, H.Z., Kholkin, A.L., Cross-sectional analysis of ferroelectric domains in PZT capacitors via piezoresponse force microscopy (2007) J. Phys. D: Appl. Phys., 40, pp. 7053-7056; Zhang, Q.M., Wang, H., Cross, L.E., Piezoelectric tubes and tubular composites for actuator and sensor applications (1993) J. Mater. Res., 28, pp. 3962-3968; Heredia, A., Bdikin, I., Kopyl, S., Mishina, E., Semin, S., Sigov, A., German, K., Kholkin, A.L., Temperature-driven phase transformation in self-assembled diphenylalanine peptide Nanotubes, J. Phys. D: Fast Track Communciations (2010) J. Phys. D: Appl. Phys., 43, p. 462001; Wang, M., Du, L., Wu, X., Xiong, S., Chu, P.K., Charged diphenylalanine nanotubes and controlled hierarchical self-assembly (2011) ACS Nano, 5, pp. 4448-4454; Fishbine, B.H., Carbon nanotube alignment and manipulation using electrostatic fields (1996) Fuller. Sci. Technol., 4, pp. 87-100; Scott, J.F., Fan, H.J., Kawasaki, S., Banys, J., Ivanov, M., MacUtkevic, J., Blinc, R., Kholkin, A.L., Terahertz emission from tubular Pb(Zr,Ti)O3 nanostructures (2008) Nano Lett., 8, pp. 4404-4409; Eliseev, E.A., Kalinin, S.V., Jesse, S., Bravina, S.L., Morozovska, A.N., Electromechanical detection in scanning probe microscopy: Tip models and materials contrast (2007) J. Appl. Phys., 102, p. 014109; Bystrov, V.S., Seyedhosseini, E., Kopyl, S., Bdikin, I.K., Kholkin, A.L., Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements (2014) J. Appl. Phys., 116, p. 066803; Nguen, V., Jenkins, K., Yang, R., Epitaxial growth of vertically aligned piezoelectric diphenylalanine peptide microrods with uniform polarization (2015) Nano Energy, 17, pp. 323-329; Yoon, J., Kim, S., Kim, D., Kim, I.-D., Hong, S., No, K., Fabrication of highly ordered and well-aligned PbTiO3/TiN core-shell nanotube arrays (2015) Small, 11, pp. 3750-3754; Kim, B., Hong, S., Choi, H., Ryu, W.-H., Paik, H., Choi, Y.-Y., Kwon, H.-S., No, K., Fabrication and characterization of nanoscale ferroelectric honeycombs (2013) J. Am. Ceram. Soc., 96, pp. 1355-1358; De La Rica, R., Mendoza, E., Matsui, H., (2010) Small, 6, p. 1753; Chen, C.H., Lo, S.H., Tsai, F., Erten, A., Lo, Y.-H., Microfluidic cell sorter with integrated piezoelectric actuator (2009) Biomed. Microdevices, 11, pp. 1223-1231; Handelman, A., Beker, P., Amdursky, N., Rosenman, G., Physics and engineering of peptide supramolecular nanostructures (2012) Phys. Chem. Chem. Phys., 14, pp. 6391-6408; Semin, S., Van Etteger, A., Cattaneo, L., Amdursky, N., Kulyuk, L., Lavrov, S., Sigov, A., Rasing, T., Strong thermo-induced single and two-photon green luminescence in self-organized peptide microtubes (2015) Small, 11, pp. 1156-1160
Correspondence Address Kholkin, A.L.; Institute of Natural Sciences, Ural Federal University, 51 Lenin Avenue, Russian Federation; email: kholkin@ua.pt
Publisher Elsevier Ltd
CODEN JPCSA
Language of Original Document English
Abbreviated Source Title J Phys Chem Solids
Source Scopus