Evaporation-Driven Crystallization of Diphenylalanine Microtubes for Microelectronic Applications / Nuraeva A., Vasilev S., Vasileva D., Zelenovskiy P., Chezganov D., Esin A., Kopyl S., Romanyuk K., Shur V.Y., Kholkin A.L. // Crystal Growth and Design. - 2016. - V. 16, l. 3. - P. 1472-1479.

ISSN:
15287483
Type:
Article
Abstract:
Self-assembly of supramolecular biomaterials such as proteins or peptides has revealed great potential for their use in various applications ranging from scaffolds for cell culture to light-emitting diodes and piezoelectric transducers. Many of these applications require controlled growth of individual objects in the configuration allowing simple transfer to the desired device. In this work, we grew millimeter-long diphenylalanine (FF) self-assembled microtubes with high aspect ratio via evaporation-driven crystallization of nonsaturated FF solutions, making use of the Marangoni flow in the drying droplets. The growth mechanism was investigated by measuring the microtube length as a function of time. Jerky (steplike) growth behavior was observed and explained by a self-activated process in which additional activation energy is provided through condensation. The calculated growth rate due to the diffusion-controlled process is in agreement with the experimentally measured values. The grown microtubes were successfully transferred to metallized patterned substrates, and their specific conductivity and piezoelectric properties were evaluated as a function of the applied voltage and frequency. A number of piezoelectric resonances were observed and attributed to different vibrational modes excited by the piezoelectric effect inherent to the FF structure. © 2016 American Chemical Society.
Author keywords:
Index keywords:
Activation energy; Aspect ratio; Cell culture; Evaporation; Light emitting diodes; Microelectronics; Piezoelectricity; Proteins; Scaffolds (biology); Self assembly; Diffusion-controlled process; High
DOI:
10.1021/acs.cgd.5b01604
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959556460&doi=10.1021%2facs.cgd.5b01604&partnerID=40&md5=98f4d3d3f464ac9f6249029818ac001f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959556460&doi=10.1021%2facs.cgd.5b01604&partnerID=40&md5=98f4d3d3f464ac9f6249029818ac001f
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Physics Department, CICECO, Materials Institute of Aveiro, Aveiro, Portugal
Funding Details PT2020, FEDER, Federación Española de Enfermedades Raras; SFRH/BPD/88362/2012, FCT, Federación Española de Enfermedades Raras; MEC, Federación Española de Enfermedades Raras
References Ariga, K., Mori, T., Hill, J.P., (2012) Adv. Mater., 24, p. 158; Valery, C., Artzner, F., Paternostre, M., (2011) Soft Matter, 7, p. 9583; Adler-Abramovich, L., Gazit, E., (2014) Chem. Soc. Rev., 43, p. 6881; Handelman, A., Beker, P., Amdursky, N., Rosenman, G., (2012) Phys. Chem. Chem. Phys., 14, p. 6391; Yang, Y.L., Khoe, U., Wang, X.M., Horii, A., Yokoi, H., Zhang, S.G., (2009) Nano Today, 4, p. 193; Ryu, J., Lim, S.Y., Park, C.B., (2009) Adv. Mater., 21, p. 1577; Amdursky, N., Molotskii, M., Aronov, D., Adler-Abramovich, L., Gazit, E., Rosenman, G., (2009) Nano Lett., 9, p. 3111; Cipriano, T., Knotts, G., Laudari, A., Bianchi, R.C., Alves, W.A., Guha, S., (2014) ACS Appl. Mater. Interfaces, 6, p. 21408; Yemini, M., Reches, M., Rishpon, J., Gazit, E., (2005) Nano Lett., 5, p. 183; Reches, M., Gazit, E., (2003) Science, 300, p. 625; Reches, M., Gazit, E., (2004) Nano Lett., 4, p. 581; Li, Q., Jia, Y., Dai, L., Yang, Y., Li, J., (2015) ACS Nano, 9, p. 2689; Kim, J., Han, T.H., Kim, Y.L., Park, S., Choi, J., Churchill, D.G., Kim, S.O., Ihee, H., (2010) Adv. Mater., 22, p. 583; Görbitz, C.H., (2006) Chem. Commun., 22, p. 2332; Görbitz, C.H., (2001) Chem. - Eur. J., 7, p. 5153; Adler-Abramovich, L., Kol, N., Yanai, I., Barlam, D., Shneck, R.Z., Gazit, E., Rousso, I., (2010) Angew. Chem., 122, p. 10135; (2010) Angew. Chem., Int. Ed., 49, p. 9939. , 10.1002/anie.201002037; Wang, M., Du, L., Wu, X., Xiong, S., Chu, P.K., (2011) ACS Nano, 5, p. 4448; Kholkin, A.L., Amdursky, N., Bdikin, I., Rosenman, G., Gazit, E., (2010) ACS Nano, 4, p. 610; Semin, S., Van Etteger, A., Cattaneo, L., Amdursky, N., Kulyuk, L., Lavrov, S., Sigov, A., Rasing, Th., (2015) Small, 11, p. 1156; De La Rica, R., Matsui, H., (2010) Chem. Soc. Rev., 39, p. 3499; Thomson, J., (1855) Philos. Mag., 10, p. 330; Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A., (1997) Nature, 389, p. 827; Lomakin, A., Chung, D.S., Benedek, G.B., Kirschner, D.A., Teplow, D.B., (1996) Proc. Natl. Acad. Sci. U. S. A., 93, p. 1125; Lekprasert, B., Korolkov, V., Falamas, A., Chis, V., Roberts, C.J., Tendler, S.J.B., Notingher, I., (2012) Biomacromolecules, 13 (7), pp. 2181-2187; Zelenovskiy, P.S., Shur, V.Ya., Nuraeva, A.S., Vasilev, S.G., Vasileva, D.S., Alikin, D.O., Chezganov, D.S., Kholkin, A.L., (2015) Ferroelectrics, 475, pp. 127-134; De Gennes, P.G., (1985) Rev. Mod. Phys., 57, p. 827; Pimpinelli, A., Villain, J., (1998) Physics of Crystal Growth, p. 377. , Cambridge University Press: New York; Hu, H., Larson, R.G., (2005) Langmuir, 21, p. 3972; Vekilov, P.G., (2007) Cryst. Growth Des., 7, p. 2796; Weeks, J.D., Gilmer, G.H., (1979) Adv. Chem. Phys., 40, pp. 157-228; Burton, W.K., Cabrera, N., Frank, F.C., (1951) Philos. Trans. R. Soc., A, 243, p. 299; Wulff, G., (1901) Z. Kristallogr. - Cryst. Mater., 34, p. 449; Hu, H., Larson, R.G., (2006) J. Phys. Chem. B, 110, p. 7090; Hu, H., Larson, R.G., (2005) Langmuir, 21, p. 3972; Delgado, J.M.P.Q., (2007) J. Phase Equilib. Diffus., 28, p. 427; Heredia, A., Bdikin, I., Kopyl, S., Mishina, E., Semin, S., Sigov, A., German, K., Kholkin, A.L., (2010) J. Phys. D: Appl. Phys., 43, p. 462001; Gan, Z., Wu, X., Zhu, X., Shen, J., (2013) Angew. Chem., 125, p. 2109; (2013) Angew. Chem., Int. Ed., 52, p. 2055. , 10.1002/anie.201207992; Nikitin, T.; et al., In preparation; Cordes, M., Kottgen, A., Jasper, C., Jacques, O., Boudebous, H., Giese, B., (2008) Angew. Chem., Int. Ed., 47, p. 3461; Comer, J., Dehez, F., Cai, W., Chipot, C., (2013) J. Phys. Chem. C, 117, p. 26797; Hassan, S.A., Hummer, G., Lee, Y.S., (2006) J. Chem. Phys., 124, p. 204510; Yemini, M., Reches, M., Rishpon, J., Gazit, E., (2005) Nano Lett., 5, p. 183; Brand, O., Dufour, I., Heinrich, S.M., Josse, F., (2015) Resonant MEMS: Fundamentals, Implementation and Application, , Eds. Wiley-VCH: Weinheim, Germany; Janshoff, A., Galla, H.-J., Steinem, C., (2000) Angew. Chem., Int. Ed., 39, p. 4004; Marrazza, G., (2014) Biosensors, 4, p. 301
Correspondence Address Kholkin, A.L.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: kholkin@ua.pt
Publisher American Chemical Society
CODEN CGDEF
Language of Original Document English
Abbreviated Source Title Cryst. Growth Des.
Source Scopus