References |
Rybjanets, A.N., Nasedkin, A.V., Turik, A.V., New microstructural design concept for polycrystalline composite materials (2004) Integrated Ferroelectrics, 63, pp. 179-182; Rybyanets, A.N., Rybyanets, A.A., Ceramic piezocomposites, modeling, technology, and characterization (2011) IEEE Trans. UFFC, 58 (9), pp. 1757-1774; Rybyanets, A.N., Porous piezoceramics: Theory, technology, and properties (2011) IEEE Trans. UFFC, 58 (7), pp. 1492-1507; Topolov, V.Y., Bowen, C.R., (2009) Electromechanical Properties in Composites Based on Ferroelectrics, , Springer-Verlag London Limited; Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Local polarization dynamics in ferroelectric materials (2010) Rep. Prog. Phys., 73, p. 056502; Gruverman, A., Kalinin, S.V., Piezoresponce force microscopy and recent advances in nanoscale studies of ferroelectrics (2006) J. Mater. Sci., 41, pp. 107-116; Kalinin, S.V., Karapetian, E., Kachanov, M., Nanoelectromechanics of piezoresponse force microscopy (2004) Phys. Rev. B., 70, p. 184101; Morozovska, A.N., Svechnikov, S.V., Eliseev, E.A., Jesse, S., Rodriguez, B.J., Kalinin, S.V., Piezoresponse force spectroscopy of ferroelectric-semiconductor materials (2007) J. Appl. Phys., 102, p. 114108; Legrand, C., Da Costa, A., Desfeux, R., Soyer, C., Rèmiens, D., Piezoelectric evaluation of ion beam etched Pb(Zr,Ti)O3 thin films by piezoresponse force microscopy (2007) Appl. Surf. Sci., 253, pp. 4942-4946; Durkan, C., Welland, M.E., Chu, D.P., Migliorato, P., Probing domains at the nanometer scale in piezoelectric thin films (1999) Phys. Rev. B., 60, p. 16198; Durkan, C., Chu, D.P., Migliorato, P., Welland, M.E., Investigation into local piezoelectric properties by atomic force microscopy (2000) Appl. Phys. Lett., 76, pp. 366-368; Hong, S., Ecabart, B., Colla, E.L., Setter, N., Three-dimensional ferroelectric domain imaging of bulk Pb(Zr,Ti)O3 by atomic force microscopy (2004) Appl. Phys. Lett., 84, pp. 2382-2384; Jungk, T., Hoffmann, A., Soergel, E., Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy (2006) Appl. Phys. Lett., 89, p. 163507; Jungk, T., Hoffmann, A., Soergel, E., Consequences of the background in piezoresponse force microscopy on the imaging of ferroelectric domain structures (2007) J. Microscopy., 227, pp. 72-78; Jungk, T., Hoffmann, A., Soergel, E., Challenges for the determination of piezoelectric constants with piezoresponse force microscopy (2007) Appl. Phys. Lett., 91, p. 253511; Bo, H., Kan, Y., Lu, X., Peng, S., Wang, X., Liu, Y., Cai, W., Zhu, J., Influence of feedback parameters on ferroelectric domain imaging with piezoresponse force microscopy (2010) Rev. Sci. Instr., 81, p. 043704; Ivry, Y., Chu, D.P., Durkan, C., Nanometer resolution piezoresponse force microscopy to study deep submicron ferroelectric and ferroelastic domains (2009) Appl. Phys. Lett., 94, p. 162903; Gruverman, A., (2014) Advanced Modes of Piezoresponce Force Microscopy. Tutorial Lecture. Internat. Conf. Piezoresponce Force Microscopy and Nanoscale Phenomena in Polar Materials (PFM-2014), , Ekaterinburg, Russia; Felten, F., Schneider, G.A., Muñoz Saldaña, J., Kalinin, S.V., Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy (2004) J. Appl. Phys., 96, pp. 563-568; Durkan, C., Welland, M.E., Chu, D.P., Migliorato, P., Probing domains at the nanometer scale in piezoelectric thin films (1999) Phys. Rev. B., 60, pp. 16198-16204; Piazza, D., Galassi, C., Barzegar, A., Damjanovic, D., Dielectric and piezoelectric properties of PZT ceramics with anisotropic porosity (2010) J. Electroceram., 24, pp. 170-176; Radchenko, G.S., Plated designed structures: New possibility of obtaining resonance enhancement of piezoelectric properties using Lamb waves (2008) J. Phys. D: Appl. Phys., 41, p. 15421 |