Fourth and fifth virial coefficients and thermodynamic properties of the dipolar hard sphere fluids in zero external magnetic field / Vtulkina E.D., Elfimova E.A. // Fluid Phase Equilibria. - 2016. - V. 417, l. . - P. 109-114.

ISSN:
03783812
Type:
Article
Abstract:
Analytical expressions of the fourth and the fifth virial coefficients for the dipole hard sphere fluid in zero external magnetic field are obtained on the basis of numerical results of Mayer-sampling calculations. The virial coefficients are incorporated in to the so-called logarithmic free energy (LFE) theory [E.A. Elfimova, A.O. Ivanov, P.J. Camp, Phys. Rev. E, 86, 021126 (2012)]. In this theory, the virial expansion of the Helmholtz free energy is re-summed into a logarithmic function. The argument of the logarithm is a polynomial expansion in density with coefficients chosen to give the first few terms in the conventional virial expansion. The theoretical predictions of the thermodynamic functions based on the LFE theory that accounts five virial coefficients are compared critically with published results from Monte Carlo simulations, conventional virial expansion, and known theory based on Padé approximation [G.S. Rushbrooke, G. Stell, J.S. Hoye, Mol. Phys., 26, 1199 (1973)]. It is shown that the LFE theory accurately captures computer simulation results for dipolar coupling constant λ ≤ 4, even at the highest value of the particle volume fraction φ ≲ 0.5, and outperforms thermodynamic theories mentioned above. © 2016 Elsevier B.V.
Author keywords:
Dipolar hard sphere fluid; Thermodynamic properties; Virial coefficients
Index keywords:
Expansion; Fluids; Intelligent systems; Magnetic fields; Monte Carlo methods; Spheres; Thermodynamic properties; Thermodynamics; Analytical expressions; Dipolar hard spheres; External magnetic field;
DOI:
10.1016/j.fluid.2016.02.032
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959092500&doi=10.1016%2fj.fluid.2016.02.032&partnerID=40&md5=e7658405fdf4f7363e60620b8192b4fa
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959092500&doi=10.1016%2fj.fluid.2016.02.032&partnerID=40&md5=e7658405fdf4f7363e60620b8192b4fa
Affiliations Institute of Mathematics and Computer Sciences, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, Russian Federation
Author Keywords Dipolar hard sphere fluid; Thermodynamic properties; Virial coefficients
References Gray, C.G., Gubbins, K.E., Theory of Molecular Fluids (1984) Fundamentals, 1. , Clarendon, Oxford; Gubbins, K., Twu, C., (1978) Chem. Eng. Sci., 33, p. 863; Máté, Z., Szalai, I., (2010) Fluid Ph. Equilib., 289, p. 54; Lamperski, S., G.R., (2012) Fluid Ph. Equilib., 317, p. 29; Elfimova, E., Ivanov, A., Sindt, J., Camp, P., (2015) Mol. Phys., 113, p. 3717; Turysheva, E.V., Solovyova, A.Y., Elfimova, E.A., (2015) Fluid Ph. Equilib., 386, p. 125; Alavi, F., Feyzi, F., (2008) Mol. Phys., 106, p. 161; Ganzenmüller, G., Patey, G.N., Camp, P.J., (2009) Mol. Phys., 107, p. 403; Kalyuzhnyi, Y.V., Protsykevytch, I.A., Ganzenmüller, G., Camp, P.J., (2008) EPL, 84, p. 26001; Camp, P.J., Patey, G.N., (2000) Phys. Rev. E, 62, p. 5403; Pshenichnikov, A.F., Mekhonoshin, V.V., (2001) Eur. Phys. J. E, 6, p. 399; Szalai, I., Dietrich, S., (2011) J. Phys. Condens. Matter, 23, p. 326004; Osipov, M.A., Teixeira, P.I.C., Telo da Gama, M.M., (1996) Phys. Rev. E, 54, p. 2597; Huke, B., Lücke, M., (2000) Phys. Rev. E, 62, p. 6875; Pshenichnikov, A.F., Ivanov, A.S., (2012) Phys. Rev. E, 86. , 051401; Novak, E., Minina, E., Pyanzina, E., Kantorovich, S., Ivanov, A., (2013) J. Chem. Phys., 139, p. 224905; Henderson, D., (2011) Conden. Matter Phys., 14, p. 33001; Ornstein, L.S., Zernike, F., (1914) Proc. Acad. Sci. Amst., 17, p. 793; Wertheim, M.S., (1971) J. Chem. Phys., 55, p. 4291; Morozov, K.I., (1993) J. Magn. Magn. Mater., 122, p. 98; Henderson, D., Boda, D., Szalai, I., Chan, K., (1999) J. Chem. Phys., 110, p. 7348; Rushbrooke, G., Stell, G., Hoye, J., (1973) Mol. Phys., 26, p. 1199; Pople, J.A., (1954) Proc. R. Soc., 221, p. 508; Gubbins, K.E., Gray, C.G., (1972) Mol. Phys., 23, p. 187; Ananth, M.S., Gubbins, K.E., Gray, C.G., (1974) Mol. Phys., 28, p. 1005; Kalyuzhnyi, Y.V., Stell, G., (1993) Mol. Phys., 78, p. 1247; Kalyuzhnyi, Y.V., Protsykevytch, I.A., Cummings, P.T., (2007) Europhys. Lett., 80, p. 56002; Aim, K., Nezbeda, I., (1983) Fluid Ph. Equilib., 12, p. 235; Nezbeda, I., (1993) Fluid Ph. Equilib., 87, p. 237; Nezbeda, I., Krečí, J., (2004) Fluid Ph. Equilib., 314, p. 156; Ivanov, A.O., Novak, E.V., (2007) Colloid J., 69, p. 302; Buevich, Y.A., Zubarev, A., Ivanov, A., (1989) Magnetohydrodynamics, 2, p. 39; Carnahan, N.F., Starling, K.E., (1969) J. Chem. Phys., 51, p. 635; Joslin, C.G., (1981) Mol. Phys., 42, p. 1507; Joslin, C., Goldman, S., (1993) Mol. Phys., 79, p. 499; Philipse, A.P., Kuipers, B.W.M., (2010) J. Phys. Condens. Matter, 22, p. 325104; Elfimova, E.A., Ivanov, A.O., Camp, P.J., (2012) Phys. Rev. E, 86. , 021126; Singh, J.K., Kofke, D.A., (2004) Phys. Rev. Lett., 92, p. 220601; Allen, M., Tildesley, D., (1987) Computer Simulation of Liquids, , Oxford University Press, Oxford; Elfimova, E.A., Ekaterinchuk, E., Solovjova, A.Y., Ivanov, A., (2013) Magnetohydrodynamics, 49, p. 111; Elfimova, E.A., Ivanov, A.O., Camp, P.J., (2013) Phys. Rev. E, 88; Balescu, R., (1975) Equilibrium and Nonequilibrium Statistical Mechanics, , Wiley-Interscience, New York; Schultz, A.J., Kofke, D.A., (2014) Phys. Rev. E, 90; Ng, K.C., Valleau, J.P., Torrie, G.M., Patey, G.N., (1979) Mol. Phys., 38, p. 781; Tsebers, A.O., (1982) Magnetohydrodynamics, 18, p. 137
Correspondence Address Elfimova, E.A.; Institute of Mathematics and Computer Sciences, Ural Federal University, 51 Lenin Avenue, Russian Federation; email: Ekaterina.Elfimova@urfu.ru
Publisher Elsevier
CODEN FPEQD
Language of Original Document English
Abbreviated Source Title Fluid Phase Equilib.
Source Scopus