Thermodynamics of the Stockmayer fluid in an applied field / Elfimova E.A., Ivanov A.O., Sindt J.O., Camp P.J. // Molecular Physics. - 2015. - V. 113, l. 23. - P. 3717-3728.

ISSN:
00268976
Type:
Article
Abstract:
The thermodynamic properties of the Stockmayer fluid in an applied field are studied using theory and computer simulation. Theoretical expressions for the second and third virial coefficients are obtained in terms of the dipolar coupling constant (, measuring the strength of dipolar interactions as compared to thermal energy) and dipole-field interaction energy (α, being proportional to the applied field strength). These expressions are tested against numerical results obtained by Mayer sampling calculations. The expression for the second virial coefficient contains terms up to λ4, and is found to be accurate over realistic ranges of dipole moment and temperature, and over the entire range of the applied field strength (from zero to infinity). The corresponding expression for the third virial coefficient is truncated at λ3, and is not very accurate: higher order terms are very difficult to calculate. The virial coefficients are incorporated in to a thermodynamic theory based on a logarithmic representation of the Helmholtz free energy. This theory is designed to retain the input virial coefficients, and account for some higher order terms in the sense of a resummation. The compressibility factor is obtained from the theory and compared to results from molecular dynamics simulations with a typical value λ = 1. Despite the mathematical approximations of the virial coefficients, the theory captures the effects of the applied field very well. Finally, the vapour-liquid critical parameters are determined from the theory, and compared to published simulation results; the agreement between the theory and simulations is good. © 2015 Taylor & Francis.
Author keywords:
applied field; simulation; Stockmayer fluid; theory
Index keywords:
Molecular dynamics; Thermodynamic properties; Thermodynamics; Applied field; Molecular dynamics simulations; Second virial coefficients; simulation; Stockmayer fluids; Theoretical expression; theory;
DOI:
10.1080/00268976.2015.1058979
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959129165&doi=10.1080%2f00268976.2015.1058979&partnerID=40&md5=e125b403382680e130ea3267ed8dab01
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959129165&doi=10.1080%2f00268976.2015.1058979&partnerID=40&md5=e125b403382680e130ea3267ed8dab01
Affiliations Institute of Mathematics and Computer Sciences, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, Russian Federation; School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, United Kingdom
Author Keywords applied field; simulation; Stockmayer fluid; theory
Funding Details 3.12.2014/K, Engineering and Physical Sciences Research Council; EPSRC, Engineering and Physical Sciences Research Council
References Stockmayer, W.H., (1941) J. Chem. Phys., 9, p. 398; Rowlinson, J.S., (1951) J. Chem. Phys., 19, p. 827; Rowlinson, J.S., (1951) J. Chem. Phys., 19, p. 831; Barker, J.A., Leonard, P.J., Pompe, A., (1966) J. Chem. Phys., 44, p. 4206; Teixeira, P.I.C., Tavares, J.M., Telo Da Gama, M.M., (2000) J. Phys., 12, p. R411; Rosensweig, R.E., (1998) Ferrohydrodynamics, , (Dover Publications, Inc., New York); Ivanov, A.O., Kantorovich, S.S., Reznikov, E.N., Holm, C., Pshenichnikov, A.F., Lebedev, A.V., Chremos, A., Camp, P.J., (2007) Phys. Rev. E, 75, p. 061405; Ivanov, A.O., Kantorovich, S.S., Reznikov, E.N., Holm, C., Pshenichnikov, A.F., Lebedev, A.V., Chremos, A., Camp, P.J., (2007) Magnetohydrodynamics, 43, p. 393; Camp, P.J., Elfimova, E.A., Ivanov, A.O., (2014) J. Phys., 26, p. 456002; Ivanov, A.O., Elfimova, E.A., (2015) J. Magn. Magn. Mater., 374, p. 327; Van Leeuwen, M.E., Smit, B., (1993) Phys. Rev. Lett., 71, p. 3991; Van Leeuwen, M.E., Smit, B., Hendriks, E.M., (1993) Mol. Phys., 78, p. 271; Van Leeuwen, M.E., (1994) Mol. Phys., 82, p. 383; Ng, K.C., Valleau, J.P., Torrie, G.M., Patey, G.N., (1979) Mol. Phys., 38, p. 781; Caillol, J.M., (1993) J. Chem. Phys., 98, p. 9835; Weis, J.J., Levesque, D., (1993) Phys. Rev. Lett., 71, p. 2729; Levesque, D., Weis, J.J., (1994) Phys. Rev. E, 49, p. 5131; Stevens, M.J., Grest, G.S., (1994) Phys. Rev. Lett., 72, p. 3686; Stevens, M.J., Grest, G.S., (1995) Phys. Rev. E, 51, p. 5962; Stevens, M.J., Grest, G.S., (1995) Phys. Rev. E, 51, p. 5976; McGrother, S.C., Williamson, D.C., Jackson, G., (1996) J. Chem. Phys., 104, p. 6755; Boda, D., Winkelmann, J., Liszi, J., Szalai, I., (1996) Mol. Phys., 87, p. 601; Szalai, I., Henderson, D., Boda, D., Chan, K.Y., (1999) J. Chem. Phys., 110, p. 7348; Camp, P.J., Shelley, J.C., Patey, G.N., (2000) Phys. Rev. Lett., 84, p. 115; Kristóf, T., Liszi, J., Szalai, I., (2004) Phys. Rev. E, 69, p. 062106; Hentschke, R., Bartke, J., Pesth, F., (2007) Phys. Rev. E, 75, p. 011506; Bartke, J., Hentschke, R., (2007) Phys. Rev. E, 75, p. 061503; Ganzenmüller, G., Camp, P.J., (2007) J. Chem. Phys., 126, p. 191104; Ganzenmüller, G., Camp, P.J., (2007) J. Chem. Phys., 127, p. 154504; Ivanov, A.O., Kantorovich, S.S., Camp, P.J., (2008) Phys. Rev. E, 77, p. 013501; Hentschke, R., Bartke, J., (2008) Phys. Rev. E, 77, p. 013502; Almarza, N.G., Lomba, E., Martín, C., Gallardo, A., (2008) J. Chem. Phys., 129, p. 234504; Jia, R., Hentschke, R., (2009) Phys. Rev. E, 80, p. 051502; Ganzenmüller, G., Patey, G.N., Camp, P.J., (2009) Mol. Phys., 107, p. 403; Rovigatti, L., Russo, J., Sciortino, F., (2011) Phys. Rev. Lett., 107, p. 237801; Rovigatti, L., Russo, J., Sciortino, F., (2012) Soft Matter, 8, p. 6310; Dussi, S., Rovigatti, L., Sciortino, F., (2013) Mol. Phys., 111, p. 3608; Groh, B., Dietrich, S., (1996) Phys. Rev. E, 53, p. 2509; Klapp, S., Forstmann, F., (1999) Phys. Rev. E, 60, p. 3183; Hayter, J.B., Pynn, R., (1982) Phys. Rev. Lett., 49, p. 1103; Klapp, S.H.L., Patey, G.N., (2000) J. Chem. Phys., 112, p. 3832; Ivanov, A.O., Novak, E.V., (2007) Colloid J., 69, p. 302; Elfimova, E.A., Ivanov, A.O., (2010) J. Exp. Theor. Phys., 111, p. 146; Elfimova, E.A., Ivanov, A.O., Camp, P.J., (2013) Phys. Rev. E, 88, p. 042310; Elfimova, E.A., Ivanov, A.O., Camp, P.J., (2012) Phys. Rev. E, 86, p. 021126; Caracciolo, S., Mognetti, B.M., Pelissetto, A., (2006) J. Chem. Phys., 125, p. 094903; Caracciolo, S., Mognetti, B.M., Pelissetto, A., (2008) Macromol. Theory Simul., 17, p. 67; Singh, J.K., Kofke, D.A., (2004) Phys. Rev. Lett., 92, p. 220601; Aim, K., Nezbeda, I., (1983) Fluid Phase Equilib., 12, p. 235; Nezbeda, I., (1993) Fluid Phase Equil., 87, p. 237; Kolafa, J., Nezbeda, I., (1994) Fluid Phase Equilib., 100, p. 1; Nezbeda, I., Smith, W.R., (2004) Fluid Phase Equilib., 216, p. 183; Krejčí, J., Nezbeda, I., (2012) Fluid Phase Equilib., 314, p. 156; Barker, J.A., Henderson, D., (1967) J. Chem. Phys., 47, p. 4714; Hansen, J.P., McDonald, I.R., (2006) Theory of Simple Liquids, , 3rd ed. (Academic Press, London); Carnahan, N.F., Starling, K.E., (1969) J. Chem. Phys., 51, p. 635; LAMMPS Molecular Dynamics Simulator, , http://lammps.sandia.gov; Plimpton, S., (1995) J. Comp. Phys., 117, p. 1; Banerjee, S., Griffiths, R.B., Widom, M., (1998) J. Stat. Phys., 93, p. 109; Potoff, J.J., Panagiotopoulos, A.Z., (1998) J. Chem. Phys., 109, p. 10914; Shi, W., Johnson, J.K., (2001) Fluid Phase Equil., 187-188, p. 171
Correspondence Address Camp, P.J.; School of Chemistry, University of Edinburgh, David Brewster Road, United Kingdom; email: philip.camp@ed.ac.uk
Publisher Taylor and Francis Ltd.
CODEN MOPHA
Language of Original Document English
Abbreviated Source Title Mol. Phys.
Source Scopus