References |
Nazari, A., Bajaj, D., Zhang, D., Romberg, E., Arola, D., Aging and the reduction in fracture toughness of human dentin (2009) Journal of the Mechanical Behavior of Biomedical Materials, 2 (5), pp. 550-559; Kinney, J.H., Nalla, R.K., Pople, J.A., Breunig, T.M., Ritchie, R.O., Age-related transparent root dentin: Mineral concentration, crystallite size, and mechanical properties (2005) Biomaterials, 26 (16), pp. 3363-3376; Arola, D., Reprogel, R.K., Effects of aging on the mechanical behavior of human dentin (2005) Biomaterials, 26 (18), pp. 4051-4061; Senawongse, P., Otsuki, M., Tagami, J., Mjör, I., Age-related changes in hardness and modulus of elasticity of dentine (2006) Archives of Oral Biology, 51 (6), pp. 457-463; Kinney, J.H., Marshall, S.J., Marshall, G.W., The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature (2003) Critical Reviews in Oral Biology and Medicine, 14 (1), pp. 13-29; Waters, N.E., Some mechanical and physical properties of teeth (1980) Symposia of the Society for Experimental Biology, 34, pp. 99-135; Habelitz, S., Marshall, G.W., Jr., Balooch, M., Marshall, S.J., Nanoindentation and storage of teeth (2002) Journal of Biomechanics, 35 (7), pp. 995-998; Ten Cate, A.R., (1980) Oral Histology, Development Structure and Function, , Mosby, St. Louis, Mo, USA, 4th edition; Vasiliadis, L., Darling, A.I., Levers, B.G.H., Thehistology of sclerotic human root dentine (1983) Archives of Oral Biology, 28 (8), pp. 693-700; Angker, L., Nockolds, C., Swain, M.V., Kilpatrick, N., Correlating the mechanical properties to the mineral content of carious dentine - A comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals (2004) Archives of Oral Biology, 49 (5), pp. 369-378; Peiris, H.R.D., Pitakotuwage, T.N., Takahashi, M., Sasaki, K., Kanazawa, E., Root canal morphology of mandibular permanent molars at different ages (2008) International Endodontic Journal, 41 (10), pp. 828-835; Thomas, R.P., Moule, A.J., Bryant, R., Root canal morphology of maxillary permanent first molar teeth at various ages (1993) International Endodontic Journal, 26 (5), pp. 257-267; Tronstad, L., Ultrastructural observations on human coronal dentin (1973) European Journal of Oral Sciences, 81 (2), pp. 101-111; Dechichi, P., Moura, C.C.M., Filho, A.W.A., Biffi, J.C.G., TEM analysis of the early mineralization process of mantle dentin (2007) Modern Research and Educational Topics in Microscopy, pp. 599-605; Zavgorodniy, A.V., Rohanizadeh, R., Bulcock, S., Swain, M.V., Ultrastructural observations and growth of occluding crystals in carious dentine (2008) Acta Biomaterialia, 4 (5), pp. 1427-1439; Gawda, H., Sekowski, L., Trebacz, H., In vitro examination of human teeth using ultrasound and X-ray diffraction (2004) Acta of Bioingenering and Biomechanics, 6 (1), pp. 41-49; Habelitz, S., Balooch, M., Marshall, S.J., Balooch, G., Marshall, G.W., Jr., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils (2002) Journal of Structural Biology, 138 (3), pp. 227-236; Nalla, R.K., Porter, A.E., Daraio, C., Ultrastructural examination of dentin using focused ion-beam cross-sectioning and transmission electron microscopy (2005) Micron, 36 (7-8), pp. 672-680; Zavgorodniy, A.V., Rohanizadeh, R., Swain, M.V., Ultrastructure of dentine carious lesions (2008) Archives of Oral Biology, 53 (2), pp. 124-132; Waidyasekera, K., Nikaido, T., Weerasinghe, D., Why does fluorosed dentine show a higher susceptibility for caries: An ultra-morphological explanation (2010) Journal of Medical and Dental Sciences, 57 (1), pp. 17-23; Balooch, M., Demos, S.G., Kinney, J.H., Marshall, G.W., Balooch, G., Marshall, S.J., Local mechanical and optical properties of normal and transparent root dentin (2001) Journal of Materials Science: Materials in Medicine, 12 (6), pp. 507-514; Altinini, M., Age determination from teeth: A review (1983) The Journal of the Dental Association of South Africa, 38, pp. 275-279; Teaford, M.F., Smith, M.M., Feguson, M.W.J., (2000) Development, Function and Evolution of Teeth, , Cambridge University Press, Cambridge, UK; White, T.D., Black, M.T., Folkens, P.A., (2012) Human Osteology, , Elsevier, Philadelphia, Pa, USA, 3rd edition; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of root dentin under Sjögren's syndrome (2011) Materials Letters, 65 (15-16), pp. 2435-2438; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of human dentin under uniaxial compression (2012) International Journal of Biomaterials, 2012, 8p; Clinton, J., Ladd, D., (1988) Introduction to Biological Electron Microscopy: Theory and Techniques, Research Industries; Gao, H., Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials (2006) International Journal of Fracture, 138; Bar-On, B., Wagner, H.D., Enamel and dentin as multiscale bio-composites (2012) Journal of the Mechanical Behavior of Biomedical Materials, 12, pp. 174-183; Hanlie, H., Liyun, T., Tao, J., The crystal characteristics of enamel and dentin by XRD method (2006) Journal of Wuhan University of Technology-Materials Science Edition, 21 (1), pp. 9-12; Database PDF-2, No 00-046-0905, , http://www.icdd.com/products/pdf2.htm; Elliot, J.C., Wilson, R.M., Dowker, S.E.P., Apatite structures (2002) Proceedings of the Denver X-Ray Conference (DXC) on Applications of X-Ray Analysis, Vol. 45 of Advances in X-ray Analysis, pp. 172-181. , JCPDS; Carter, C.B., (1996) Transmission Electron Microscopy: A Textbook for Materials Science: Basics, Diffraction, Imaging, Spectrometry, , Springer, Berlin, Germany; Hirsch, P.B., Howie, A., Nicholson, R., Pashley, D.W., Whelan, M., (1977) Electron Microscopy of Thin Crystals, , R. E. Krieger, Malabar, Fla, USA, 2nd edition; Hayat, M.A., (1986) Basic Techniques for Transmission Electron Microscopy, , Academic Press, New York, NY, USA; Hashimoto, M., Tay, F.R., Ohno, H., SEM and TEM analysis of water degradation of human dentinal collagen (2003) Journal of Biomedical Materials Research Part B: Applied Biomaterials, 66 (1), pp. 287-298; Kinney, J.H., Pople, J.A., Marshall, G.W., Marshall, S.J., Collagen orientation and crystallite size in human dentin: A small angle X-ray scattering study (2001) Calcified Tissue International, 69 (1), pp. 31-37; Hench, L.L., Wilson, J., (1993) An Introduction to Bioceramics, , World Scientific Publishing; Hudson, A., Harrison, J.P., (1997) Engineering Rock Mechanics An Introduction to the Principles, 1. , Elsevier Science, Oxford, UK; Pramanik, S., Agarwal, A.K., Rai, K.N., Garg, A., Development of high strength hydroxyapatite by solid-state-sintering process (2007) Ceramics International, 33 (3), pp. 419-426; Fan, X., Case, E.D., Ren, F., Shu, Y., Baumann, M.J., Part II. Fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials (2012) Journal of the Mechanical Behavior of Biomedical Materials, 8, pp. 99-110; Zaytsev, D., Correction of some mechanical characteristics of human dentin under compression considering the shape effect (2015) Materials Science and Engineering C, 49, pp. 101-105; Zaytsev, D., Ivashov, A.S., Mandra, J.V., Panfilov, P., On the deformation behavior of human dentin under compression and bending (2014) Materials Science and Engineering C, 41, pp. 83-90; Riande, E., Diaz-Calleja, R., Prolongo, M.G., Masegosa, R.M., Saldm, C., (2000) Polymer Viscoelasticity: Stress and Strain in Practice, , Marcel Dekker, New York, NY, USA; Buehler, M.J., Nature designs tough collagen: Explaining the nanostructure of collagen fibrils (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (33), pp. 12285-12290; Svensson, R.B., Hassenkam, T., Hansen, P., Magnusson, S.P., Viscoelastic behavior of discrete human collagen fibrils (2010) Journal of the Mechanical Behavior of Biomedical Materials, 3 (1), pp. 112-115; Landon, G., Lewis, G., Boden, G.F., The influence of particle size on the tensile strength of particulate-filled polymers (1977) Journal of Materials Science, 12 (8), pp. 1605-1613 |