The Difference of Structural State and Deformation Behavior between Teenage and Mature Human Dentin / Panfilov P., Zaytsev D., Antonova O.V., Alpatova V., Kiselnikova L.P. // International Journal of Biomaterials. - 2016. - V. 2016, l. .

ISSN:
16878787
Type:
Article
Abstract:
Objective. The cause of considerable elasticity and plasticity of human dentin is discussed in the relationship with its microstructure. Methods. Structural state of teenage and mature human dentin is examined by using XRD and TEM techniques, and their deformation behavior under compression is studied as well. Result. XRD study has shown that crystallographic type of calcium hydroxyapatite in human dentin (calcium hydrogen phosphate hydroxide Ca9HPO4(PO4)5OH; Space Group P63/m (176); a = 9,441 A; c = 6,881 A; c / a = 0,729; Crystallite (Scherrer) 200 A) is the same for these age groups. In both cases, dentin matrix is X-ray amorphous. According to TEM examination, there are amorphous and ultrafine grain phases in teenage and mature dentin. Mature dentin is stronger on about 20% than teenage dentin, while teenage dentin is more elastic on about 20% but is less plastic on about 15% than mature dentin. Conclusion. The amorphous phase is dominant in teenage dentin, whereas the ultrafine grain phase becomes dominant in mature dentin. Mechanical properties of human dentin under compression depend on its structural state, too. Copyright © 2016 Peter Panfilov et al.
Author keywords:
Index keywords:
calcium phosphate dibasic; hydroxyapatite; adolescent; adult; age; Article; child; collagen fiber; compression; crystallography; dentin; dentin microstructure; elastic tissue; electron diffraction; hu
DOI:
10.1155/2016/6073051
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960158841&doi=10.1155%2f2016%2f6073051&partnerID=40&md5=9b49e6c564949f01a13e2af993de2faa
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 6073051
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960158841&doi=10.1155%2f2016%2f6073051&partnerID=40&md5=9b49e6c564949f01a13e2af993de2faa
Affiliations Ural Federal University, Ekaterinburg, Russian Federation; Moscow State Medical Stomatological University, Moscow, Russian Federation
Chemicals/CAS calcium phosphate dibasic, 14567-84-1, 14567-92-1, 21063-37-6, 7757-93-9, 7789-77-7; hydroxyapatite, 1306-06-5, 51198-94-8
Funding Details 15-19-10007, RSF, Robert Schalkenbach Foundation
Funding Text The reported study was supported by RSF, research Project no. 15-19-10007.
References Nazari, A., Bajaj, D., Zhang, D., Romberg, E., Arola, D., Aging and the reduction in fracture toughness of human dentin (2009) Journal of the Mechanical Behavior of Biomedical Materials, 2 (5), pp. 550-559; Kinney, J.H., Nalla, R.K., Pople, J.A., Breunig, T.M., Ritchie, R.O., Age-related transparent root dentin: Mineral concentration, crystallite size, and mechanical properties (2005) Biomaterials, 26 (16), pp. 3363-3376; Arola, D., Reprogel, R.K., Effects of aging on the mechanical behavior of human dentin (2005) Biomaterials, 26 (18), pp. 4051-4061; Senawongse, P., Otsuki, M., Tagami, J., Mjör, I., Age-related changes in hardness and modulus of elasticity of dentine (2006) Archives of Oral Biology, 51 (6), pp. 457-463; Kinney, J.H., Marshall, S.J., Marshall, G.W., The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature (2003) Critical Reviews in Oral Biology and Medicine, 14 (1), pp. 13-29; Waters, N.E., Some mechanical and physical properties of teeth (1980) Symposia of the Society for Experimental Biology, 34, pp. 99-135; Habelitz, S., Marshall, G.W., Jr., Balooch, M., Marshall, S.J., Nanoindentation and storage of teeth (2002) Journal of Biomechanics, 35 (7), pp. 995-998; Ten Cate, A.R., (1980) Oral Histology, Development Structure and Function, , Mosby, St. Louis, Mo, USA, 4th edition; Vasiliadis, L., Darling, A.I., Levers, B.G.H., Thehistology of sclerotic human root dentine (1983) Archives of Oral Biology, 28 (8), pp. 693-700; Angker, L., Nockolds, C., Swain, M.V., Kilpatrick, N., Correlating the mechanical properties to the mineral content of carious dentine - A comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals (2004) Archives of Oral Biology, 49 (5), pp. 369-378; Peiris, H.R.D., Pitakotuwage, T.N., Takahashi, M., Sasaki, K., Kanazawa, E., Root canal morphology of mandibular permanent molars at different ages (2008) International Endodontic Journal, 41 (10), pp. 828-835; Thomas, R.P., Moule, A.J., Bryant, R., Root canal morphology of maxillary permanent first molar teeth at various ages (1993) International Endodontic Journal, 26 (5), pp. 257-267; Tronstad, L., Ultrastructural observations on human coronal dentin (1973) European Journal of Oral Sciences, 81 (2), pp. 101-111; Dechichi, P., Moura, C.C.M., Filho, A.W.A., Biffi, J.C.G., TEM analysis of the early mineralization process of mantle dentin (2007) Modern Research and Educational Topics in Microscopy, pp. 599-605; Zavgorodniy, A.V., Rohanizadeh, R., Bulcock, S., Swain, M.V., Ultrastructural observations and growth of occluding crystals in carious dentine (2008) Acta Biomaterialia, 4 (5), pp. 1427-1439; Gawda, H., Sekowski, L., Trebacz, H., In vitro examination of human teeth using ultrasound and X-ray diffraction (2004) Acta of Bioingenering and Biomechanics, 6 (1), pp. 41-49; Habelitz, S., Balooch, M., Marshall, S.J., Balooch, G., Marshall, G.W., Jr., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils (2002) Journal of Structural Biology, 138 (3), pp. 227-236; Nalla, R.K., Porter, A.E., Daraio, C., Ultrastructural examination of dentin using focused ion-beam cross-sectioning and transmission electron microscopy (2005) Micron, 36 (7-8), pp. 672-680; Zavgorodniy, A.V., Rohanizadeh, R., Swain, M.V., Ultrastructure of dentine carious lesions (2008) Archives of Oral Biology, 53 (2), pp. 124-132; Waidyasekera, K., Nikaido, T., Weerasinghe, D., Why does fluorosed dentine show a higher susceptibility for caries: An ultra-morphological explanation (2010) Journal of Medical and Dental Sciences, 57 (1), pp. 17-23; Balooch, M., Demos, S.G., Kinney, J.H., Marshall, G.W., Balooch, G., Marshall, S.J., Local mechanical and optical properties of normal and transparent root dentin (2001) Journal of Materials Science: Materials in Medicine, 12 (6), pp. 507-514; Altinini, M., Age determination from teeth: A review (1983) The Journal of the Dental Association of South Africa, 38, pp. 275-279; Teaford, M.F., Smith, M.M., Feguson, M.W.J., (2000) Development, Function and Evolution of Teeth, , Cambridge University Press, Cambridge, UK; White, T.D., Black, M.T., Folkens, P.A., (2012) Human Osteology, , Elsevier, Philadelphia, Pa, USA, 3rd edition; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of root dentin under Sjögren's syndrome (2011) Materials Letters, 65 (15-16), pp. 2435-2438; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of human dentin under uniaxial compression (2012) International Journal of Biomaterials, 2012, 8p; Clinton, J., Ladd, D., (1988) Introduction to Biological Electron Microscopy: Theory and Techniques, Research Industries; Gao, H., Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials (2006) International Journal of Fracture, 138; Bar-On, B., Wagner, H.D., Enamel and dentin as multiscale bio-composites (2012) Journal of the Mechanical Behavior of Biomedical Materials, 12, pp. 174-183; Hanlie, H., Liyun, T., Tao, J., The crystal characteristics of enamel and dentin by XRD method (2006) Journal of Wuhan University of Technology-Materials Science Edition, 21 (1), pp. 9-12; Database PDF-2, No 00-046-0905, , http://www.icdd.com/products/pdf2.htm; Elliot, J.C., Wilson, R.M., Dowker, S.E.P., Apatite structures (2002) Proceedings of the Denver X-Ray Conference (DXC) on Applications of X-Ray Analysis, Vol. 45 of Advances in X-ray Analysis, pp. 172-181. , JCPDS; Carter, C.B., (1996) Transmission Electron Microscopy: A Textbook for Materials Science: Basics, Diffraction, Imaging, Spectrometry, , Springer, Berlin, Germany; Hirsch, P.B., Howie, A., Nicholson, R., Pashley, D.W., Whelan, M., (1977) Electron Microscopy of Thin Crystals, , R. E. Krieger, Malabar, Fla, USA, 2nd edition; Hayat, M.A., (1986) Basic Techniques for Transmission Electron Microscopy, , Academic Press, New York, NY, USA; Hashimoto, M., Tay, F.R., Ohno, H., SEM and TEM analysis of water degradation of human dentinal collagen (2003) Journal of Biomedical Materials Research Part B: Applied Biomaterials, 66 (1), pp. 287-298; Kinney, J.H., Pople, J.A., Marshall, G.W., Marshall, S.J., Collagen orientation and crystallite size in human dentin: A small angle X-ray scattering study (2001) Calcified Tissue International, 69 (1), pp. 31-37; Hench, L.L., Wilson, J., (1993) An Introduction to Bioceramics, , World Scientific Publishing; Hudson, A., Harrison, J.P., (1997) Engineering Rock Mechanics An Introduction to the Principles, 1. , Elsevier Science, Oxford, UK; Pramanik, S., Agarwal, A.K., Rai, K.N., Garg, A., Development of high strength hydroxyapatite by solid-state-sintering process (2007) Ceramics International, 33 (3), pp. 419-426; Fan, X., Case, E.D., Ren, F., Shu, Y., Baumann, M.J., Part II. Fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials (2012) Journal of the Mechanical Behavior of Biomedical Materials, 8, pp. 99-110; Zaytsev, D., Correction of some mechanical characteristics of human dentin under compression considering the shape effect (2015) Materials Science and Engineering C, 49, pp. 101-105; Zaytsev, D., Ivashov, A.S., Mandra, J.V., Panfilov, P., On the deformation behavior of human dentin under compression and bending (2014) Materials Science and Engineering C, 41, pp. 83-90; Riande, E., Diaz-Calleja, R., Prolongo, M.G., Masegosa, R.M., Saldm, C., (2000) Polymer Viscoelasticity: Stress and Strain in Practice, , Marcel Dekker, New York, NY, USA; Buehler, M.J., Nature designs tough collagen: Explaining the nanostructure of collagen fibrils (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (33), pp. 12285-12290; Svensson, R.B., Hassenkam, T., Hansen, P., Magnusson, S.P., Viscoelastic behavior of discrete human collagen fibrils (2010) Journal of the Mechanical Behavior of Biomedical Materials, 3 (1), pp. 112-115; Landon, G., Lewis, G., Boden, G.F., The influence of particle size on the tensile strength of particulate-filled polymers (1977) Journal of Materials Science, 12 (8), pp. 1605-1613
Correspondence Address Panfilov, P.; Ural Federal UniversityRussian Federation; email: peter.panfilov@urfu.ru
Publisher Hindawi Limited
Language of Original Document English
Abbreviated Source Title Int. J. Biomater.
Source Scopus