Acid-Base Properties of Nanoconfined Volumes of Anodic Aluminum Oxide Pores by EPR of pH-Sensitive Spin Probes / Kovaleva E.G., Molochnikov L.S., Venkatesan U., Marek A., Stepanova D.P., Kozhikhova K.V., Mironov M.A., Smirnov A.I. // Journal of Physical Chemistry C. - 2016. - V. 120, l. 5. - P. 2703-2711.

ISSN:
19327447
Type:
Article
Abstract:
Anodic aluminum oxide (AAO) ceramic membranes with macroscopically aligned and hexagonally packed nanopore architecture are attractive substrates for forming nanotubular lipid bilayers as well as sorption and catalytic media because of a tunable pore diameter, robust pore structure, and low fabrication cost. Here we employed continuous wave X-band (9 GHz) EPR of two pH-sensitive nitroxide radicals to assess acid-base properties AAO membranes prepared from low-cost commercial grade aluminum and compared those with commercial Anodisc membranes from Whatman, Ltd. The AAO membranes with pore diameters ≥58 ± 8 nm showed essentially the same pH inside the pores, pHint, as the bulk external solution, pHext, over the 0.1-3.0 M range of ionic strength. However, the apparent pKa of nitroxide probes inside the pores deviated from the bulk values for the nanopores of smaller diameters of ca. 29 and 18 nm. Specifically, for the latter nanopores the values of pHint were found to be 0.5-0.8 pH unit lower than the bulk pHext. An increase in acidity of the bulk solution led to a steady decrease of the negative charge on inner surface of the 38 nm nanopores and its recharge from a negative to a positive value at pH 4.7 ± 0.1, corresponding to the point of zero charge (pzc). Overall, the EPR titration method described here could assist in characterization of meso- and nanoporous membranes for catalytic and sorption applications as well as act a support medium for self-assembled biomembrane systems. © 2016 American Chemical Society.
Author keywords:
Index keywords:
Aluminum; Anodic oxidation; Ceramic membranes; Electron spin resonance spectroscopy; Ionic strength; Lipid bilayers; Membranes; Mesoporous materials; Oxides; pH sensors; Probes; Substrates; Titration;
DOI:
10.1021/acs.jpcc.5b10241
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958092831&doi=10.1021%2facs.jpcc.5b10241&partnerID=40&md5=a1a1d320abaf59ee7075a683cbb4a8f8
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958092831&doi=10.1021%2facs.jpcc.5b10241&partnerID=40&md5=a1a1d320abaf59ee7075a683cbb4a8f8
Affiliations Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Yekaterinburg, Russian Federation; Department of Chemistry, Ural State Forest Engineering University, 37 Siberian Highway, Yekaterinburg, Russian Federation; Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, United States; Erlangen Catalysis Resource Center, Universitát Erlangen-Nürnberg, Egerlandstr. 3, Erlangen, Germany
Funding Details 14-03-00898, RFBR, Russian Foundation for Basic Research
References Linares, N., Silvestre-Albero, A.M., Serrano, E., Silvestre-Albero, J., Garcia-Martinez, J., Mesoporous Materials for Clean Energy Technologies (2014) Chem. Soc. Rev., 43, pp. 7681-7717; Jani, A.M.M., Losic, D., Voelcker, N.H., Nanoporous Anodic Aluminium Oxide: Advances in Surface Engineering and Emerging Applications (2013) Prog. Mater. Sci., 58, pp. 636-704; Lee, W., Park, S.-J., Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures (2014) Chem. Rev., 114, pp. 7487-7556; Feng, H., Elam, J.W., Libera, J.A., Pellin, M.J., Stair, P.C., Catalytic nanoliths (2009) Chem. Eng. Sci., 64, pp. 560-567; Masuda, H., Fukuda, K., Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina (1995) Science, 268, pp. 1466-1468; Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., Tamamura, T., Highly Ordered Nanochannel-array Architecture in Anodic Alumina (1997) Appl. Phys. Lett., 71, pp. 2770-2772; La Flamme, K.E., Popat, K.C., Leoni, L., Markiewicz, E., La Tempa, T.J., Roman, B.B., Grimes, C.A., Desai, T.A., Biocompatibility of Nanoporous Alumina Membranes for Immunoisolation (2007) Biomaterials, 28, pp. 2638-2645; Szczepanski, V., Vlassiouk, I., Smirnov, S., Stability of Silane Modifiers on Alumina Nanoporous Membranes (2006) J. Membr. Sci., 281, pp. 587-591; Jani, A.M.M., Anglin, E.J., McInnes, S.J.P., Losic, D., Shapter, J.G., Voelcker, N.H., Nanoporous Anodic Aluminium Oxide Membranes with Layered Surface Chemistry (2009) Chem. Commun., pp. 3062-3064; Chen, Y.F., Hu, Y.H., Chou, Y.I., Lai, S.M., Wang, C.C., Surface Modification of Nanoporous Anodic Alumina Membranes and Its Use in Electroosmotic Flow (2010) Sens. Actuators, B, 145, pp. 575-582; Smirnov, A.I., Poluektov, O.G., Substrate-supported lipid nanotube arrays (2003) J. Am. Chem. Soc., 125, pp. 8434-8435; Alaouie, A.M., Smirnov, A.I., Formation of a ripple phase in nanotubular dimyristoylphosphatidylcholine Bilayers confined inside nanoporous aluminum oxide substrates observed by DSC (2006) Langmuir, 22, pp. 5563-5565; Alaouie, A.M., Smirnov, A.I., Cooperativity and kinetics of phase transitions in nanopore-confined bilayers studied by differential scanning calorimetry (2005) Biophys. J., 88, pp. L11-L13; Gaede, H.C., Luckett, K.M., Polozov, I.V., Gawrisch, K., Multinuclear NMR studies of single lipid bilayers supported in cylindrical aluminum oxide nanopores (2004) Langmuir, 20, pp. 7711-7719; Chekmenev, E.Y., Hu, J., Gor'kov, P.L., Brey, W.W., Cross, T.A., Ruuge, A., Smirnov, A.I., 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores (2005) J. Magn. Reson., 173, pp. 322-327; Chekmenev, E.Y., Gor'kov, P.L., Cross, T.A., Alaouie, A.M., Smirnov, A.I., Flow-through Lipid Nanotube Arrays for Structure-Function Studies of Membrane Proteins by Solid-State NMR Spectroscopy (2006) Biophys. J., 91, pp. 3076-3084; Soubias, O., Niu, S.-L., Mitchell, D.C., Gawrisch, K., Lipid-Rhodopsin Hydrophobic Mismatch Alters Rhodopsin Helical Content (2008) J. Am. Chem. Soc., 130, pp. 12465-12471; Marek, A., Tang, W., Milikisiyants, S., Nevzorov, A.A., Smirnov, A.I., Nanotube Array Method for Studying Lipid-Induced Conformational Changes of a Membrane Protein by Solid-State NMR (2015) Biophys. J., 108, pp. 5-9; Lee, H.C., Forte, J.G., A Novel Method for Measurement of Intravesicular pH Using Fluorescent Probes (1980) Biochim. Biophys. Acta, Biomembr., 601, pp. 152-166; Fromherz, P., Lipid Coumarin Dye as a Probe of Interfacial Electrical Potential in Biomembranes (1989) Methods Enzymol., 171, pp. 376-387; Basabe-Desmonts, L., Reinhoudt, D.N., Crego-Calama, M., Design of Fluorescent Materials for Chemical Sensing (2007) Chem. Soc. Rev., 36, pp. 993-1017; Thorn, C., Carlsson, N., Gustafsson, H., Holmberg, K., Akerman, B., Olsson, L., A Method to Measure pH Inside Mesoporous Particles Using Protein-bound SNARF1 Fluorescent Probe (2013) Microporous Mesoporous Mater., 165, pp. 240-246; Pollard, H.B., Shindo, H., Creutz, C.E., Pazoles, C.J., Cohen, J.S., Internal pH and State of ATP in Adrenergic Chromaffin Granules Determined by P-31 Nuclear Magnetic Resonance Spectroscopy (1979) J. Biol. Chem., 254, pp. 1170-1177; Kallas, T., Dahlquist, F.W., P-31 Nuclear Magnetic Resonance Analysis of Internal pH during Photosynthesis in the Cyanobacterium Synechococcus (1981) Biochemistry, 20, pp. 5900-5907; Stewart, I.M., Chapman, B.E., Kirk, K., Kuchel, P.W., Lovric, V.A., Raftos, J.E., Intracellular pH in Stored Erythrocytes - Refinment and Further Characterization of the P-31 NMR Methylphosphonate Procedure (1986) Biochim. Biophys. Acta, Mol. Cell Res., 885, pp. 23-33; Kenwright, A.M., Kuprov, I., De Luca, E., Parker, D., Pandya, S.U., Senanayake, P.K., Smith, D.G., 19F NMR-based pH Probes: Lanthanide(III) Complexes with pH-sensitive Chemical Shifts (2008) Chem. Commun., pp. 2514-2516; Jindal, A.K., Merritt, M.E., Suh, E.H., Malloy, C.R., Sherry, A.D., Kovács, Z., Hyperpolarized 89Y Complexes as pH Sensitive NMR Probes (2010) J. Am. Chem. Soc., 132, pp. 1784-1785; Khramtsov, V.V., Volodarsky, L.B., Use of Imidazoline Nitroxides in Studies of Chemical Reactions. ESR Measurements of the Concentration and Reactivity of Protons, Thiols and Nitric Oxide (1989) Spin Labeling. the Next Millennium, 14, pp. 109-180. , Berliner, L. J. Plenum Press: New York; Molochnikov, L.S., Kovalyova, E.G., Grigor'ev, I.A., Zagorodni, A.A., Direct Measurement of H+ Activity inside Cross-Linked Functional Polymers Using Nitroxide Spin Probes (2004) J. Phys. Chem. B, 108, pp. 1302-1313; Voinov, M.A., Smirnov, A.I., Spin labels and spin probes for measurements of local pH and electrostatics by EPR (2011) Electron Paramagnetic Resonance, 22, pp. 71-106. , Gilbert, B. C. Chechik, V. Murphy, D. M; Ayadim, M., Jiwan, J.L.H., De Silva, A.P., Soumillion, J.P., Photosensing by a Fluorescing Probe Covalently Attached to the Silica (1996) Tetrahedron Lett., 37, pp. 7039-7042; Badini, G.E., Grattan, K.T.V., Tseung, A.C.C., Impregnation of a pH-sensitive Dye into Sol-gels for Finer Optic Chemical Sensors (1995) Analyst, 120, pp. 1025-1028; Malins, C., Glever, H.G., Keyes, T.E., Vos, J.G., Dressick, W.J., MacCraith, B.D., Sol-gel Immobilised Ruthenium(II) Polypyridyl Complexes as Chemical Transducers for Optical pH Sensing (2000) Sens. Actuators, B, 67, pp. 89-95; Khramtsov, V.V., Vainer, L.M., Photon Transfer Reactions in Free Radicals. Spin pH Probes (1988) Russ. Chem. Rev., 57, p. 824; Kovaleva, E., Molochnikov, L., PH-Sensitive Nitroxide Radicals for Studying Inorganic and Organo-Inorganic Materials and Systems (2012) Nitroxides - Theory, Experiment and Applications, pp. 211-246. , Kokorin, A. I. InTech: Rijeka, Croatia; Molochnikov, L.S., Kovaleva, E.G., Golovkina, E.L., Kirilyuk, I.A., Grigor'ev, I.A., Spin Probe Study of Acidity of Inorganic Materials (2007) Colloid J., 69, pp. 769-776; Parshina, E.V., Molochnikov, L.S., Kovaleva, E.G., Shishmakov, A.B., Mikushina, Y.V., Kirilyuk, I.A., Grigor'ev, I.A., Medium Acidity and Catalytic Properties of Composite Materials Based on Silica and Titania and Powder Cellulose in the Presence of Cu2+ Ions (2011) Russ. J. Phys. Chem. A, 85, pp. 452-456; Khramtsov, V.V., In vivo Spectroscopy and Imaging of Nitroxide Probes (2012) Nitroxides - Theory, Experiment and Applications, pp. 317-346. , Kokorin, A. I. InTech: Rijeka, Croatia; Khlestkin, V.K., Polienko, J.F., Voinov, M.A., Smirnov, A.I., Chechik, V., Interfacial Surface Properties of Thiol-Protected Gold Nanoparticles: A Molecular Probe EPR Approach (2008) Langmuir, 24, pp. 609-612; Shishmakov, A.B., Mikushina, Y.V., Valova, M.S., Koryakova, O.V., Parshina, E.V., Petrov, L.A., Zirconium Dioxide Xerogel Modified with Powdered Cellulose (2009) Russ. J. Appl. Chem., 82, pp. 2113-2117; Kovaleva, E.G., Molochnikov, L.S., Golovkina, E.L., Hartmann, M., Kirilyuk, I.A., Grigor'ev, I.A., Dynamics of pH-sensitive Nitroxide Radicals in Water Adsorbed in Ordered Mesoporous Molecular Sieves by EPR Spectroscopy (2013) Microporous Mesoporous Mater., 179, pp. 258-264; Kovaleva, E.G., Molochnikov, L.S., Golovkina, E.L., Hartmann, M., Kirilyuk, I.A., Grigoriev, I.A., Electrical Potential near Hydrated Surface of Ordered Mesoporous Molecular Sieves Assessed by EPR of Molecular pH-probes (2015) Microporous Mesoporous Mater., 203, pp. 1-7; Le Coz, F., Arurault, L., Fontorbes, S., Vilar, V., Datas, L., Winterton, P., Chemical Composition and Structural Changes of Porous Templates Obtained by Anodising Aluminium in Phosphoric Acid Electrolyte (2010) Surf. Interface Anal., 42, pp. 227-233; McQuaig, M.K., Toro, A., Van Geertruyden, W., Misiolek, W.Z., The Effect of High Temperature Heat Treatment on the Structure and Properties of Anodic Aluminum Oxide (2011) J. Mater. Sci., 46, pp. 243-253; Kirilyuk, I.A., Shevelev, T.G., Morozov, D.A., Khromovskih, E.L., Skuridin, N.G., Khramtsov, V.V., Grigor'ev, I.A., Grignard Reagent Addition to 5-Alkylamino-4H-imidazole 3-oxides: Synthesis of New pH-sensitive Spin Probes (2003) Synthesis-Stuttgart, pp. 871-878; Kirilyuk, I.A., Bobko, A.A., Khramtsov, V.V., Grigor'ev, I.A., Nitroxides with two pK values - Useful spin probes for pH monitoring within a broad range (2005) Org. Biomol. Chem., 3, pp. 1269-1274; Li, F.Y., Zhang, L., Metzger, R.M., On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide (1998) Chem. Mater., 10, pp. 2470-2480; Khramtsov, V.V., Weiner, L.M., Eremenko, S.I., Belchenko, O.I., Schastnev, P.V., Grigorev, I.A., Reznikov, V.A., Proton Exchange in Stable Nitroxyl Radicals of the Imidazoline and Imidazoline Series (1985) J. Magn. Reson., 61, pp. 397-408; Gulla, A.F., Budil, D.E., Orientation Dependence of Electric Field Effects on the g-Factor of Nitroxides Measured by 220 GHz EPR (2001) J. Phys. Chem. B, 105, pp. 8056-8063; Smirnov, A.I., Ruuge, A., Reznikov, V.A., Voinov, M.A., Grigor'ev, I.A., Site-directed Electrostatic Measurements with a Thiol-specific pH-sensitive Nitroxide: Differentiating local pK and Polarity Effects by High-field EPR (2004) J. Am. Chem. Soc., 126, pp. 8872-8873; Nordio, L., General Magnetic Resonance Theory (1976) Spin Labeling. Theory and Applications, pp. 5-52. , Berliner, L. J. Academic Press: New York; Molochnikov, L.S., Kovalyova, E.G., Grigorev, I.A., Reznikov, V.A., (1996) Determination of Acidity in the Interior of the Cross-linked Polyelectrolyte Grain by the Use of PH-sensitive Probes, , American Chemical Society: Washington, DC, USA; Mekhaev, A.V., Pestov, A.V., Molochnikov, L.S., Kovaleva, E.G., Pervova, M.G., Yaltuk, Y.G., Grigor'ev, I.A., Kirilyuk, I.A., Structure and Characteristics of Chitosan Cobalt-containing Hybrid Systems. the Catalysts of Olefine Oxidation (2011) Russ. J. Phys. Chem. A, 85, pp. 1155-1161; Mekhaev, A.V., Pestov, A.V., Molochnikov, L.S., Kovaleva, E.G., Yatluk, Y.G., Grigor'ev, I.A., Kirilyuk, I.A., Investigation of the Structure of Chitosan Hybrid Systems by pH-sensitive Nitroxyl Radical (2011) Russ. J. Phys. Chem. A, 85, pp. 987-992; Kovaleva, E.G., Molochnikov, L.S., Parshina, E.V., Shishmakov, A.B., Mikushina, Y.V., Kirilyuk, I.A., Grigor'ev, I.A., Effect of the Surface Charge on the Complexing and Catalytic Properties of Cu2+-containing Composite Materials Based on Zirconia and Powdered Cellulose (2014) Russ. J. Phys. Chem. B, 8, pp. 317-325; Parks, G.A., Isoelectric Points of Solid Oxides, Solid Hydroxides and Aqueous Hydroxo Complex Systems (1965) Chem. Rev., 65, pp. 177-198; Ntalikwa, J.W., Determination of Surface Charge Density of Alpha-alumina by Acid-base Titration (2007) Bull. Chem. Soc. Ethiop., 21, pp. 117-128; Das, M.R., Borah, J.M., Kunz, W., Ninham, B.W., Mahiuddin, S., Ion Specificity of the Zeta Potential of α-Alumina, and of the Adsorption of p-Hydroxybenzoate at the α-Alumina-water Interface (2010) J. Colloid Interface Sci., 344, pp. 482-491; Pham, T.D., Kobayashi, M., Adachi, Y., Interfacial Characterization of α-Alumina with Small Surface Area by Streaming Potential and Chromatography (2013) Colloids Surf., A, 436, pp. 148-157; Pedimonte, B.J., Moest, T., Luxbacher, T., Von Wilmowsky, C., Fey, T., Schlegel, K.A., Greil, P., Morphological Zeta-potential Variation of Nanoporous Anodic Alumina Layers and Cell Adherence (2014) Acta Biomater., 10, pp. 968-974; Franks, G.V., Meagher, L., The Isoelectric Points of Sapphire Crystals and Alpha-alumina Powder (2003) Colloids Surf., A, 214, pp. 99-110; Eng, P.J., Trainor, T.P., Brown, G.E., Waychunas, G.A., Newville, M., Sutton, S.R., Rivers, M.L., Structure of the Hydrated Alpha-Al2O3 (0001) Surface (2000) Science, 288, pp. 1029-1033; Hiemstra, T., Dewit, J.C.M., Vanriemsdijk, W.H., Multisite Proton Adsorption Modeling at the Solid/Solution Interface of (Hydr)oxides: A New Approach: 2. Application to Various Important (Hydr)oxides (1989) J. Colloid Interface Sci., 133, pp. 105-117; Hiemstra, T., Van Riemsdijk, W.H., Bolt, G.H., Multisite Proton Adsorption Modeling at the Solid/Solution Interface of (Hydr)oxides: A New Approach: I. Model Description and Evaluation of Intrinsic Reaction Constants (1989) J. Colloid Interface Sci., 133, pp. 91-104; Yelken, G.O., Polat, M., Determination of Electrostatic Potential Distribution by Atomic Force Microscopy (AFM) on Model Silica and Alumina Surfaces in Aqueous Electrolyte Solutions (2014) Appl. Surf. Sci., 301, pp. 149-155
Correspondence Address Kovaleva, E.G.; Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Russian Federation; email: gek1969@bk.ru
Publisher American Chemical Society
Language of Original Document English
Abbreviated Source Title J. Phys. Chem. C
Source Scopus