General roles of phytochelatins and other peptides in plant defense mechanisms against oxidative stress/primary and secondary damages induced by heavy metals / Inouhe M., Sakuma Y., Chatterjee S., Datta S., Jagetiya B.L., Voronina A.V., Walther C., Gupta D.K. // Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. - 2015. - V. , l. . - P. 219-245.

ISSN:
нет данных
Type:
Book Chapter
Abstract:
Phytochelatins (PCs) are nonprotein cysteine-rich oligopeptides having the general structure of (γ-glutamyl-cysteinyl)n-glycine (n=2-11). They are synthesized from the precursor glutathione (a reduced form, GSH) by the activity of phytochelatin synthase (PCS). The biosynthesis is stimulated by several heavy metals (HMs), especially Cd and metalloid As. PCs can bind to various HMs like Cd, As, Cu, Pb, Zn, and Ag, via their sulfhydryl (-SH) and carboxyl (-COOH) groups. The complexations become more stable and massive in vacuole where acidlabile sulfides (S2-) are incorporated to make the PCs-S-HMs conjugates. Both the thiols and S2- are originated from sulfate through a partially common energydependent metabolism (sulfur assimilation), which is again enhanced by Cd, besides essential metals (Co, Mg). To date, fundamental roles of PCs and also related iso-peptides such as hPCs in intracellular detoxification and/or transport of HMs are well demonstrated in various plants, especially in experiments targeting genes and enzymes for PC and GSH biosynthesis. However, how they function as a defense molecule in the oxidative stresses or other biological processes are still unknown or conceiving subtle problems. Some of the possible functions are highlighted in this chapter as tentative examples for further discussion: (1) PCs- S-HMs complex as a potent pool/stock of thiols or reducing powers to be reusable for further robustious responses by the tolerant plants against various abiotic and biotic stresses including oxidative stress and (2) PCs as a possible mediator for metal translocation or redistribution via phloem rather than xylem, regardless of a trait of "hyperaccumulator" for HMs in land plants. Apart from the positive roles of PCs in HM-tolerant plants, arguments still hot arise an issue (3) the roles of PCs, GSH, and other thiols as delicate barometer or indicators in the mineral and redox balance and/or homeostasis, in addition to their well-known functions being substrates and antidotes. In the absence of HMs, the levels of PCs are too minute to account for their sufficient bindings to the essential metals. Although GSH is ubiquitous and abundant, it is a multifunctional peptide that rapidly consumed or oxidized for numerous enzymic or nonenzymic antioxidants/redox systems as well as direct substrate for PCS. Eventually, importance of preservation of thiols and sulfide (S2-) as resource for reducing powers in sensitive sessile plants against various oxidative stresses is again emphasized in return for PCs in the HM-tolerant plants in metalliferous habitats. © Springer International Publishing Switzerland 2015. All rights reserved.
Author keywords:
Glutathione; Heavy metal; Phytochelatin; Reactive oxygen species; Thiol-sulfide pool
Index keywords:
нет данных
DOI:
10.1007/978-3-319-20421-5_9
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955701699&doi=10.1007%2f978-3-319-20421-5_9&partnerID=40&md5=f6be66dd8d0d0847a0235bafcd3ba628
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955701699&doi=10.1007%2f978-3-319-20421-5_9&partnerID=40&md5=f6be66dd8d0d0847a0235bafcd3ba628
Affiliations Plant Physiology Laboratory, Department of Biology, Ehime University, Matsuyama, Japan; Defence Research Laboratory, DRDO, Post Bag 2, Tezpur, Assam, India; Laboratory of Plant Physiology and Biotechnology, Department of Botany, M.L.V. Government College, Bhilwara, Rajasthan, India; Physical Technology Institute, Ural Federal University, Mira str., 19, Ekaterinburg, Russian Federation; Institut für Radioökologie und Strahlenschutz (IRS), Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Str. 2, Gebäude 4113, Hannover, Germany
Author Keywords Glutathione; Heavy metal; Phytochelatin; Reactive oxygen species; Thiol-sulfide pool
References Atal, N., Saradhi, P.P., Mohanty, P., Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: analysis of electron transport activities and changes in fluorescence yield (1991) Plant Cell Physiol, 32, pp. 943-951; Axelsen, K.B., Palmgren, M.G., Inventory of the superfamily of P-Type ion pumps in Arabidopsis (2001) Plant Physiol, 126, pp. 696-706; Batista, B.L., Nigar, M., Mestrot, A., Rocha, B.A., Júnior, F.B., Price, A.H., Raab, A., Feldmann, J., Identification and quantification of phytochelatins in roots of rice to long-term exposure:evidence of individual role on arsenic accumulation and translocation (2014) J Exp Bot, 65, pp. 1467-1479; Baxter, I., Tchieu, J., Sussman, M.R., Boutry, M., Palmgren, M.G., Gribskov, M., Harper, J.F., Axelsen, K.B., Genomic comparison of P-Type ATPase ion pumps in Arabidopsis and rice (2003) Plant Physiol, 132, pp. 618-628; Becana, M., Matamoros, M.A., Udvardi, M., Dalton, D.A., Recent insights into antioxidant defenses of legume root nodules (2010) New Phytol, 188, pp. 960-976; Bloem, E., Haneklaus, S., Salac, I., Wichkenhauser, P., Schnug, E., Facts and fiction about sulfur metabolism in relation to plant-pathogen interaction (2007) Plant Biol, 9, pp. 596-607; Blokhina, O., Fagerstedt, K., Oxidative stress and antioxidant defenses in plants (2006) Oxidative stress, disease and cancer., , Singh KK (ed), Imperial College Press, London; Broadley, M.R., Willey, N.J., Wilkins, J.C., Baker, A.J.M., Mead, A., White, P.J., Phylogenetic variation in heavy metal accumulation in angiosperms (2001) New Phytol, 152, pp. 9-27; Cataldo, D.A., Wildung, R.E., The role of soil and plant metabolic processes in controlling trace element behavior and bioavailability to animals (1983) Sci Total Environ, 28, pp. 159-168; (2007) Priority list of hazardous substances, , http://www.atsdr.cdc.gov/spl/supportdocs/appendix-d.pdf; Chatterjee, S., Chattopadhyay, B., Mukhopadhyay, S.K., Sequestration and localization of metals in two common wetland plants of contaminated east Calcutta wetlands: a Ramsar Site in India (2007) Land Contam Reclamat, 15, pp. 437-452; Chatterjee, S., Chetia, M., Singh, L., Chattopadhyay, B., Datta, S., Mukhopadhyay, S.K., A study on the phytoaccumulation of waste elements in wetland plants of a Ramsar site in India (2011) Environ Monit Assess, 178, pp. 361-371; Chen, A., (2005) Long distance transport of phytochelatins in Arabidopsis and the isolation and characterization of cadmium tolerant mutants in Arabidopsis, , http://escholarship.org/uc/item/0fm285zm, PhD thesis, UC San Diego Electronic Theses and Dissertations; Clemens, S., Antosiewicz, D.M., Ward, J.M., Schachtman, D.P., Schroeder, J.I., The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast (1998) Proc Natl Acad Sci USA, 95, pp. 12043-12048; Clemens, S., Kim, E.J., Neumann, D., Schroeder, J.I., Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast (1999) EMBO J, 18, pp. 3325-3333; Clemente, M.R., Bustos-Sanmamed, P., Loscos, J., James, E.K., Pérez-Rontomé, C., Navascués, J., Gay, M., Becana, M., Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones (2012) J Exp Bot, 63, pp. 3923-3934; Cobbett, C.S., Phytochelatins and their roles in heavy metal detoxification (2000) Plant Physiol, 123, pp. 825-832; Cobbett, C., Goldsbrough, P., Phytochelatin and metallothioneins: roles in heavy metal detoxification and homeostasis (2002) Annu Rev Plant Biol, 53, pp. 159-182; Colangelo, E.P., Guerinot, M.L., Put the metal to the petal: metal uptake and transport throughout plants (2006) Curr Opin Plant Biol, 9, pp. 322-330; Conn, S., Gilliham, M., Comparative physiology of elemental distributions in plants (2010) Ann Bot, 105, pp. 1081-1102; Curie, C., Alonso, J.M., Le Jean, M., Ecker, J.R., Briat, J.F., Involvement of NRAMP1 from Arabidopsis thaliana in iron transport (2000) Biochem J, 347, pp. 749-755; De Knecht, J.A., van Dillen, M., Koevoets, P.L.M., Schat, H., Verkleij, J.A.C., Ernst, W.H.O., Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris: chain length distribution and sulfide incorporation (1994) Plant Physiol, 104, pp. 255-261; DiDonato, R.J., Jr., Roberts, L.A., Sanderson, T., Eisley, R.B., Walker, E.L., Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes (2004) Plant J, 39, pp. 403-414; Dietz, K.J., Baier, M., Krämer, U., Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants (1999) Heavy metal stress in plants: from molecules to ecosystems., , Prasad MNV, Hagemeyer J (eds), Springer, Heidelberg; Duan, G.L., Hu, Y., Liu, W.J., Kneer, R., Zhao, F.J., Zhu, Y.G., Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain (2011) Environ Exp Bot, 71, pp. 416-421; Ducruix, C., Junot, C., Fiévet, J.B., Villiers, F., Ezan, E., Bourguignon, J., New insights into the regulation of phytochelatin biosynthesis in A (2006) thaliana cells from metabolite profiling analyses. Biochimie, 88, pp. 1733-1742; Emery, L., Whelan, S., Hirschi, K.D., Pittman, J.K., Protein phylogenetic analysis of Ca(2+)/cation Antiporters and insights into their evolution in plants (2012) Front Plant Sci, 3, p. 1; Freeman, J.L., Persans, M.W., Nieman, K., Albrecht, C., Peer, W., Pickering, I.J., Salt, D.E., Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators (2004) Plant Cell, 16, pp. 2176-2191; Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I., Laloi, C., Reactive oxygen species as signals that modulate plant stress responses and programmed cell death (2006) Bioessays, 11, pp. 1091-1101; Gekeler, W., Grill, E., Winnacker, E.L., Zenk, M.H., Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins (1989) Z Naturforsh, 44, pp. 361-369; Grill, E., Winnacker, E.L., Zenk, M.H., Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins (1987) Proc Natl Acad Sci USA, 84, pp. 439-443; Grill, E., Loffler, S., Winnacker, E.L., Zenk, M.H., Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase) (1989) Proc Natl Acad Sci USA, 86, pp. 6838-6842; Guerinot, M.L., The ZIP family of metal transporters (2000) Biochim Biophys Acta, 1465, pp. 190-198; Gumaelius, L., Lahner, B., Salt, D.E., Banks, J.A., Arsenic hyperaccumulation in gametophytes of Pteris vittata: a new model system for analysis of arsenic hyperaccumulation (2004) Plant Physiol, 136, pp. 3198-3208; Gupta, D.K., Tohoyama, H., Joho, M., Inouhe, M., Possible roles of phytochelatins and glutathione metabolism in cadmium tolerance in chickpea roots (2002) J Plant Res, 115, pp. 429-437; Gupta, D.K., Tohoyama, H., Joho, M., Inouhe, M., Changes in the levels of phytochelatins and related metal binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions (2004) J Plant Res, 117, pp. 253-256; Gupta, D.K., Huang, H.G., Yang, X.E., Razafindrabe, B.H.N., Inouhe, M., The detoxification of lead in Sedum alfredii H (2010) is not related with phytochelatins but the glutathione. J Hazard Mater, 177, pp. 437-444; Gupta, D.K., Inouhe, M., Rodríguez-Serrano, M., Romero-Puerta, M.C., Sandalio, L.M., Oxidative stress and arsenic toxicity: role of NADPH oxidases (2013) Chemosphere, 90, pp. 1987-1996; Gupta, D.K., Huang, H.G., Corpas, F.J., Lead tolerance in plants: strategies for phytoremediation (2013) Environ Sci Pollut Res, 20, pp. 2150-2161; Ha, S.B., Smith, A.P., Howden, R., Dietrich, W.M., Bugg, S., O'Connell, M.J., Goldsbrough, P.B., Cobbett, C.S., Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe (1999) Plant Cell, 11, pp. 1153-1164; Hao, F., Wang, X., Chen, J., Involvement of plasma membrane NADPH oxidase in nickelinduced oxidative stress in roots of wheat seedling (2006) Plant Sci, 170, pp. 151-158; Hayashi, Y., Nakagawa, C.W., Mutoh, N., Isobe, M., Goto, T., Two pathways in the biosynthesis of cadystins (gEC)nG in the cell-free system of the fission yeast (1991) Biochem Cell Biol, 69, pp. 115-121; Hossain, M.A., Hossain, M.Z., Fujita, M., Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene (2009) Aust J Crop Sci, 3, pp. 53-64; Hossain, M.A., Hossain, M.D., Rohman, M.M., Da Silva, J.A.T., Fujita, M., Onion major compounds (flavonoids, organosulfurs) and highly expressed glutathione-related enzymes: possible physiological interaction, gene cloning and abiotic stress response (2012) Onion consumption and health., , Aguirre CB, Jaramillo LM (eds), Nova, New York; Hossain, M.A., Piyatida, P., Teixeira Da Silva, J.A., Fujita, M., Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and Methylglyoxal and in heavy metal chelation. J Bot, p. 37; Huang, H.G., Li, T.X., Tian, S., Gupta, D.K., Zhang, X., Yang, X.E., Role of EDTA in alleviating lead toxicity in accumulator species of Sedum alfredii H (2008) Bioresour Technol, 99, pp. 6088-6096; Inaba, T., Kobayashi, E., Suwazono, Y., Uetani, M., Oishi, M., Nakagawa, H., Nogawa, K., Estimation of cumulative cadmium intake causing Itai-itai disease (2005) Toxicol Lett, 15, pp. 192-201; Ingwersen, J., Streck, T., A regional-scale study on the crop uptake of cadmium from sandy soils: measurement and modeling (2005) J Environ Qual, 34, pp. 1026-1035; Inouhe, M., Phytochelatins (2005) Braz J Plant Physiol, 17, pp. 65-78; Inouhe, M., Sumiyoshi, M., Tohoyama, H., Joho, M., Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts (1996) Plant Cell Physiol, 37, pp. 341-346; Inouhe, M., Huang, H.G., Chaudhary, S.K., Gupta, D.K., Heavy metal bindings and its interactions with thiol peptides and other biological ligands in plant cells (2012) Metal toxicity in plants: perception, signaling and remediation., , Gupta DK, Sandalio LM (eds), Springer, Heidelberg; Kawachi, M., Kobae, Y., Mimura, T., Maeshima, M., Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity (2008) J Biol Chem, 283, pp. 8374-8383; Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., Lee, Y., The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance (2007) Plant J, 50, pp. 207-218; Kirkby, E.A., Johnson, A.E., Soil and fertilizer phosphorus in relation to crop nutrition (2008) The ecophysiology of plant-phosphorus interactions., , White PJ, Hammond JP (eds), Springer, Dordrecht; Klapheck, S., Fliegner, W., Zimmer, I., Hydroxymethyl-phytochelatins [(gamma-glutamylcysteine) n-serine] are metal-induced peptides of the Poaceae (1994) Plant Physiol, 4, pp. 1325-1332; Kobae, Y., Sekino, T., Yoshioka, H., Nakagawa, T., Martinoia, E., Maeshima, M., Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection (2006) Plant Cell Physiol, 47, pp. 309-318; Kopriva, S., Rennenberg, H., Control of sulphate assimilation and glutathione synthesis:interaction with N and C metabolisms (2004) J Exp Bot, 55, pp. 1831-1842; Korshunova, Y.O., Eide, D., Clark, W.G., Guerinot, M.L., Pakrasi, H.B., The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range (1999) Plant Mol Biol, 40, pp. 37-44; Krämer, U., Talke, I.N., Hanikenne, M., Transition metal transport (2007) FEBS Lett, 581, pp. 2263-2272; Lanquar, V., Lelièvre, F., Bolte, S., Hamès, C., Alcon, C., Neumann, D., Vansuyt, G., Thomine, S., Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron (2005) EMBO J, 24, pp. 4041-4051; Lappartient, A.G., Touraine, B., Demand-driven control of root ATP sulfurylase activity and SO42-uptake in intact canola (1996) Plant Physiol, 111, pp. 147-157; Lappartient, A.G., Vidmar, J.J., Leustek, T., Glass, A.M.D., Touraine, B., Inter-organ signalling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound (1999) Plant J, 18, pp. 89-95; Lee, S., Moon, J.S., Ko, T.S., Petros, D., Goldsbrough, P.B., Korban, S.S., Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress (2003) Plant Physiol, 131, pp. 656-663; Leustek, T., Martin, M.N., Bich, J.N., Davies, J.P., Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies (2000) Annu Rev Plant Physiol Plant Mol Biol, 51, pp. 141-165; Leustek, T., Sulfate metabolism (2002) Arabidopsis book.; Liu, F., Tang, Y., Du, R., Yang, H., Wu, Q., Qiu, R., Root for aging for zinc and cadmium requirement in the Zn/Cd hyperaccumulator plant Sedum alfredii (2010) Plant Soil, 327, pp. 365-375; Loeffler, S., Hochberger, A., Grill, E., Winnacker, E.L., Zenk, M.H., Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product (1989) FEBS Lett, 258, pp. 42-46; Lux, A., Martinka, M., Vaculik, M., White, P.J., Root responses to cadmium in the rhizosphere: a review (2011) J Exp Bot, 62, pp. 21-37; Maitani, T., Kubota, H., Sato, K., Yamada, T., The composition of metals bound to class III metallothionein (phytochelatins and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum (1996) Plant Physiol, 110, pp. 1145-1150; Maksymiec, W., Signaling responses in plants to heavy metal stress (2007) Acta Physiol Plant, 29, pp. 177-187; Manara, A., Plant responses to heavy metal toxicity (2012) Plants and heavy metals, Springer briefs in biometals., , Furini A (ed), Springer, New York; Marschner, H., (1995) Mineral nutrition of higher plants, , 2nd edn. Academic, London; Mäser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Guerinot, M.L., Phylogenetic relationships within cation transporter families of Arabidopsis (2001) Plant Physiol, 126, pp. 1646-1667; Mehra, R.K., Winge, D.R., Metal ion resistance in fungi: molecular mechanisms and their regulated expression (1990) J Cell Biochem, 45, pp. 1-11; Mehra, R.K., Tran, K., Scott, G.W., Mulchandani, P., Sani, S.S., Ag(I)-binding to phytochelatins (1996) J Inorg Biochem, 61, pp. 125-142; Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T., (2001) Principles of plant nutrition, , Kluwer, Dordrecht; Meyer, A.J., Hell, R., Glutathione homeostasis and redox regulation by sulfhydryl groups (2005) Photosynth Res, 86, pp. 435-457; Montanini, B., Blaudez, D., Jeandroz, S., Sanders, D., Chalot, M., Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity (2007) BMC Genomics, 8, p. 107; Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., Vavasseur, A., Richaud, P., AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis (2009) Plant Physiol, 149, pp. 894-904; Murasugi, A., Cadystin (phytochelatin) synthesis induced by cadmium and resulted formation of cadmium sulphide nanoparticles in Schizosaccharomyces pombe (2008) Curr Top Biotechnol, 4, pp. 65-73; Neill, S., Desikan, R., Hancock, J., Hydrogen peroxide signalling (2002) Curr Opin Plant Biol, 5, pp. 388-395; Nies, D.H., Resistance to cadmium, cobalt, zinc, and nickel in microbes (1992) Plasmid, 27, pp. 17-28; Nishida, S., Mizuno, T., Obata, H., Involvement of histidine-rich domain of ZIP family transporter TjZNT1 in metal ion specificity (2008) Plant Physiol Biochem, 46, pp. 601-606; Nishida, S., Tsuzuki, C., Kato, A., Aisu, A., Yoshida, J., Mizuno, T., AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana (2011) Plant Cell Physiol, 52, pp. 1433-1442; Nocito, F.F., Lancilli, C., Giacomini, B., Sacchi, G.A., Sulfur metabolism and cadmium stress in higher plants (2007) Plant Stress, 1, pp. 142-156. , http://globalsciencebooks.info/JournalsSup/images/Sample/PS_1(2)142-156.pdf, © Global Science Books (downloaded on 21-2-2013 from:; Noctor, G., Foyer, C.H., Ascorbate and glutathione: keeping active oxygen under control (1998) Annu Rev Plant Physiol Plant Mol Biol, 49, pp. 249-279; Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., Foyer, C.H., (2011) Glutathione. The Arabidopsis book, , American Society of Plant Biologists, Rockville, MD; Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., Foyer, C.H., Glutathione in plants: an integrated overview (2012) Plant Cell Environ, 35, pp. 454-484; Papoyan, A., Kochian, L.V., Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance: characterization of a novel heavy metal transporting ATPase (2004) Plant Physiol, 136, pp. 3814-3823; Peiter, E., Montanini, B., Gobert, A., Pedas, P., Husted, S., Maathuis, F.J.M., Blaudez, D., Sanders, D., A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance (2007) Proc Natl Acad Sci USA, 104, pp. 8532-8537; Pomponi, M., Censi, V., Di Girolamo, V., De Paolis, A., Di Toppi, L.S., Aromolo, R., Costantino, P., Cardarelli, M., Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot (2006) Planta, 223, pp. 180-190; Pourrut, B., Perchet, G., Silvestre, J., Cecchi, M., Guiresse, M., Pinelli, E., Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots (2008) J Plant Physiol, 165, pp. 571-579; Prasad, M.N.V., Freitas, H.M.O., Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology (2003) Electron J Biotechol, 6, pp. 285-321; Ramos, J., Naya, L., Gay, M., Abián, J., Becana, M., Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus (2008) Plant Physiol, 148, pp. 536-545; Rausch, T., Wachter, A., Sulfur metabolism: a versatile platform for launching defence operations (2005) Trends Plant Sci, 10, pp. 503-509; Rauser, W.E., Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins (1999) Cell Biochem Biophys, 31, pp. 19-48; Rea, P.A., Phytochelatin synthase: of a protease a peptide polymerase made (2012) Physiol Plant, 145, pp. 154-164; Remans, T., Opdenakker, K., Smeets, K., Mathijsen, D., Vangronsveld, J., Cuypers, A., Metalspecific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper (2010) Funct Plant Biol, 37, pp. 532-544; Rodriguez-Serrano, M., Romero-Puertas, M.C., Zabalza, A., Corpas, F.J., Gomez, M., Del Rio, L.A., Sandalio, L.M., Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots (2006) Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ, 29, pp. 1532-1544; Romero-Puertas, M.C., McCarthy, I., Sandalio, L.M., Palma, J.M., Corpas, F.J., Gómez, M., Del Río, L.A., Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes (1999) Free Radic Res, 31, pp. 25-31; Saito, K., Sulfur assimilatory metabolism: the long and smelling road (2004) Plant Physiol, 136, pp. 2443-2450; Salt, D.E., Prince, R.C., Pickering, I.J., Raskin, I., Mechanisms of cadmium mobility and accumulation in Indian mustard (1995) Plant Physiol, 109, pp. 1427-1433; Salt, D.E., Kato, N., Krämer, U., Smith, R.D., Raskin, I., The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi (2000) Phytoremediation of contaminated soils and waters., , Terry N, Bãnuelos G (eds), CRC, Boca Raton, FL; Schaaf, G., Ludewig, U., Erenoglu, B.E., Mori, S., Kitahara, T., von Wirén, N., ZmYS1 functions as a proton-coupled symporter for phytosiderophore-and nicotianamine-chelated metals (2004) J Biol Chem, 279, pp. 9091-9096; Schat, H., Kalff, M.M.A., Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? (1992) Plant Physiol, 99, pp. 1475-1480; Scheller, H.V., Huang, B., Hatch, E., Goldsbrough, P.B., Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells (1987) Plant Physiol, 85, pp. 1031-1035; Schützendübel, A., Polle, A., Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization (2002) J Exp Bot, 53, pp. 1351-1365; Sengupta, D., Ramesh, G., Mudalkar, S., Kumar, K.R.R., Kirti, P.B., Reddy, A.R., Molecular cloning and characterization of γ-glutamyl cysteine synthetase (VrγECS) from roots of Vigna radiate (L.) Wilczek under progressive drought stress and recovery (2012) Plant Mol Biol Rep, 30, pp. 894-903; Seregin, I.V., Kozhevnikova, A.D., Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium (2008) Russ J Plant Physiol, 55, pp. 1-22; Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., Pinel, E., Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants (2014) Rev Environ Contam Toxicol, 232, pp. 1-44; Sherratt, P.J., Hayes, J.D., Glutathione S-transferases (2001) Enzyme systems that metabolise drugs and other xenobiotics., , Ioannides C (ed), Willey, New York; Shigaki, T., Rees, I., Nakhleh, L., Hirschi, K.D., Identification of three distinct phylogenetic groups of CAX cation/proton antiporters (2006) J Mol Evol, 63, pp. 815-825; Siedlecka, A., Baszynaski, T., Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency (1993) Physiol Plant, 87, pp. 199-202; Sobrino-Plata, J., Ortega-Villasante, C., Flores-Cáceres, M.L., Escobar, C., Del Campo, F.F., Hernández, L.E., Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa (2009) Chemosphere, 77, pp. 946-954; Socha, A.L., Guerinot, M.L., Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants (2014) Front Plant Sci, 5, p. 106; Sterckeman, T., Perriguey, J., Caël, M., Schwartz, C., Morel, J.L., Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: consequences for the assessment of the soil quantity and quality factors (2004) Plant Soil, 262, pp. 289-302; Takahashi, S., Murata, N., How do environmental stresses accelerate photo inhibition? (2008) Trends Plant Sci, 13, pp. 178-182; Thomine, S., Wang, R., Ward, J.M., Crawford, N.M., Schroeder, J.I., Cadmium and iron transport by members of a plant metal transporters family in Arabidopsis with homology to Nramp genes (2000) Proc Natl Acad Sci USA, 97, pp. 4991-4996; Thomine, S., Lelievre, F., Debarbieux, E., Schroeder, J.I., Barbier-Brygoo, H., AtNRAMP3, a multi specific vacuolar metal transporter involved in plant responses to iron deficiency (2003) Plant J, 34, pp. 685-695; Vatamaniuk, O.K., Mari, S., Lu, Y.P., Rea, P.A., AtPCS1, a phytochelatins synthase from Arabidopsis: isolation and in vitro reconstitution (1999) Proc Natl Acad Sci USA, 96, pp. 7110-7115; Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F., Curie, C., IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth (2002) Plant Cell, 14, pp. 1223-1233; Viehweger, K., How plants cope with heavy metals (2014) Bot Stud, 55, p. 35; Wachter, A., Wolf, S., Steininger, H., Bogs, J., Rausch, T., Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae (2005) Plant J, 41, pp. 15-30; Wagner, G.J., Accumulation of cadmium in crop plants and its consequences to human health (1993) Adv Agron, 51, pp. 173-212; Wenzel, W.W., Bunkowski, M., Puschenreiter, M., Horak, O., Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil (2003) Environ Pollut, 123, pp. 131-138; Williams, L.E., Pittman, J.K., Hall, J.L., Emerging mechanisms for heavy metal transport in plants (2000) Biochim Biophys Acta, 77803, pp. 1-23; Zagorchev, L., Seal, C.E., Kranner, I., Odjakova, M., A central role for thiols in plant tolerance to abiotic stress (2013) Int J Mol Sci, 14, pp. 7405-7432; Zechmann, B., Müller, M., Subcellular compartmentation of glutathione in dicotyledonous plants (2010) Protoplasma, 246, pp. 15-24; Zhang, J., Zhao, Q.Z., Duan, G.L., Huan, Y.C., Influence of sulphur on arsenic accumulation and metabolism in rice seedlings (2010) Environ Exp Bot, 72, pp. 34-40
Correspondence Address Inouhe, M.; Plant Physiology Laboratory, Department of Biology, Ehime UniversityJapan; email: inouhe@sci.ehime-u.ac.jp
Publisher Springer International Publishing
ISBN 9783319204215; 9783319204208
Language of Original Document English
Abbreviated Source Title React. Oxyg. Species and Oxidative Damage in Plants Under Stress
Source Scopus