Collinear and isotropic diffraction of laser beam and incoherent light on periodically poled domain structures in lithium niobate / Shandarov S.M., Mandel A.E., Smirnov S.V., Akylbaev T.M., Borodin M.V., Akhmatkhanov A.R., Shur V.Y. // Ferroelectrics. - 2016. - V. 496, l. 1. - P. 134-142.

ISSN:
00150193
Type:
Conference Paper
Abstract:
Possible variants of light diffraction from periodically poled domain structures in lithium niobate crystal are analyzed theoretically. It is shown that along with isotropic diffraction, elastic strains created by domain walls make it possible to observe the collinear interaction of ordinary and extraordinary waves propagating along X axis of the crystal. Diffraction of incoherent light in the collinear geometry on the PPLN with spatial period of 6.89 m, developed on the basis of a Z-cut MgO:LiNbO3 crystal using electric-field poling, is investigated experimentally. © 2016 Taylor & Francis Group, LLC.
Author keywords:
collinear diffraction; isotropic diffraction; lithium niobate; Periodically poled domain structures
Index keywords:
Diffraction; Domain walls; Electric fields; Laser beams; Lithium; Niobium compounds; Strain; Collinear diffraction; Collinear geometry; Collinear interactions; Electric field poling; Extraordinary wav
DOI:
10.1080/00150193.2016.1157439
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964507832&doi=10.1080%2f00150193.2016.1157439&partnerID=40&md5=79fbb83e90d0b466071d9610efbd8284
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964507832&doi=10.1080%2f00150193.2016.1157439&partnerID=40&md5=79fbb83e90d0b466071d9610efbd8284
Affiliations Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russian Federation; Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Labfer Ltd., Ekaterinburg, Russian Federation
Author Keywords collinear diffraction; isotropic diffraction; lithium niobate; Periodically poled domain structures
Funding Details UID RFMEFI59414X0011, Ministry of Education and Science of the Russian Federation
Funding Text This work was financially supported by the Ministry of Education and Science of the Russian Federation within the State project for 2015 and the task No. 3.878.2014/K of the project part. The research was made possible in part by the Ministry of Education and Science of the Russian Federation (UID RFMEFI59414X0011), by RFBR (Grants 13-02-01391-a, Grant 15-32-21102-mol-a-ved) and by Government of the Russian Federation (Act 211, Agreement 02.A03.21.0006).
References Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J Nonlinear Opt Phys Mater, 6, pp. 549-592; Houe, M., Townsend, P.D., An introduction to methods of periodic poling for second-harmonic generation (1995) J Phys D Appl Phys, 28, pp. 1747-1763; Myers, L.I., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3 (1995) J Opt Soc Am B., 12, pp. 2102-2116; Yamada, M., Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices (2000) Rev Sci Instrum, 71, pp. 4010-4016; Catalan, G., Seidel, J., Ramesh, R., Scott, J.F., Domain wall nanoelectronics (2012) Rev Mod Phys, 84, pp. 119-156; Fejer, M.M., Magel, G.A., Jundt, D.H., Byer, R.L., Quasi-phase-matched second harmonic generation: Tuning and tolerances (1992) IEEE J Quantum Electronics, 28, pp. 2631-2654; Aleksandrovskii, A.L., Gliko, O.A., Naumova, I.I., Pryalkin, V.I., Linear and nonlinear diffraction gratings in lithium niobate single crystals with periodically poled domain structure (1996) Kvant. Elektr, 23, pp. 657-659; Müller, M., Soergel, E., Buse, K., Langrock, C., Fejer, M.M., Investigation of periodically poled lithium niobate crystals by light diffraction (2005) J Appl Phys, 97, p. 044102; Shur, V.Y.A., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics, 340, pp. 3-16; Shur, V.Y.A., Nano-And micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, p. 622. , In: Z.G. Ye, ed. Cambridge: Woodhead Publishing-669; Scrymgeour, D.A., Gopalan, V., Itagi, A., Saxena, A., Swart, P.J., Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate (2005) Phys Rev B., 71, p. 184110; Lee, D., Behera, R.K., Wu, P., Xu, H., Li, Y.L., Sinnott, S.B., Gopalan, V., Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls (2009) Phys Rev B., 80, p. 060102; Lee, D., Xu, H., Dierolf, V., Gopalan, V., Phillpot, S.R., Structure and energetics of ferroelectric domain walls in LiNbO 3 from atomic-level simulations (2010) Phys Rev B., 82, p. 014104; Devonshire, A.F., XCVI Theory of barium titanate: Part i (1949) The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 40, pp. 1040-1063; Devonshire, A.F., CIX Theory of barium titanate: Part II (1951) The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42, pp. 1065-1079; Zhirnov, V.A., A contribution to the theory of domain walls in ferroelectrics (1959) Sov Phys JETP, 8, pp. 822-825; Vasudevan, R.K., Morozovska, A.N., Eliseev, E.A., Britson, J., Yang, J.C., Chu, Y.H., Kalinin, S.V., Domain wall geometry controls conduction in ferroelectrics (2012) Nano Letters, 12, pp. 5524-5531; Landau, L.D., Lifshitz, E.M., Theory of elasticity, vol 7 (1986) Course of Theoretical Physics, 3, p. 109; Sirotin, Y.U.I., Shaskol'Skaya, M.P., (1975) Principles of Crystallography, , Moscow: Nauka; Sonin, A.S., Lomova, L.G., (1965) Izv Acad Nauk SSSR ser Fiz, 29, pp. 965-968; Sonin, A.S., Strukov, B.A., (1971) Introduction to Ferroelectricity, , Moscow: Vysshaya Shkola; Balakshii, V.I., Parygin, V.N., Chirkov, L.E., (1985) Physical Principles of Acousto-optics, , Мoscow: Radio i Svyaz; Shen, H.Y., Xu, H., Zeng, Z.D., Lin, W.X., Wu, R.F., Xu, G.F., Measurement of refractive indices and thermal refractive-index coefficients of LiNbO 3 crystal doped with 5 mol.% MgO (1992) Appl Optics, 31, pp. 6695-6697
Correspondence Address Mandel, A.E.; Tomsk State University of Control Systems and RadioelectronicsRussian Federation; email: a_e_mandel@mail.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus