References |
Gualtieri, J.G., Kosinski, J.A., Ballato, A., Piezoelectric materials for acoustic wave applications (1994) IEEE Trans Ultrason Ferroelectr Freq Control, 41, pp. 53-59; Arizmendi, L., Photonic applications of lithium niobate crystals (2004) Phys Stat Sol, 201, pp. 253-283; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J Nonlinear Opt Phys Mater, 6, pp. 549-592; Fejer, M.M., Magel, G.A., Jundt, D.H., Byer, R.L., Quasi-phase-matched second harmonic generation: Tuning and tolerances (1992) IEEE J Quantum Electron, 28, pp. 2631-2654; Wong, K.K., (2002) Properties of Lithium Niobate, , London: IET; Volk, T., Wohlecke, M., (2008) Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, , Berlin, Heidelberg: Springer-Verlag; Furukawa, Y., Kitamura, K., Suzuki, E., Niwa, K., Stoichiometric LiTaO 3 single crystal growth by double crucible Czochralski method using automatic powder supply system (1999) J Cryst Growth, 197, pp. 889-895; Bordui, P.F., Norwood, R.G., Jundt, D.H., Fejer, M.M., Preparation and characterization of off-congruent lithium niobate crystals (1992) J Appl Phys, 71, pp. 875-879; Malovichko, G.I., Grachev, V.G., Kokanyan, E.P., Schirmer, O.F., Betzler, K., Gather, B., Jermann, F., Wöhlecke, M., Characterization of stoichiometric LiNbO 3 grown from melts containing K 2O (1993) Appl Phys A Sol Surf, 56, pp. 103-108; Furukawa, Y., Sato, M., Nitanda, F., Ito, K., Growth and characterization of MgO-doped LiNbO 3 for electro-optic devices (1990) J Cryst Growth, 99, pp. 832-836; Hum, D.S., Route, R.K., Miller, G.D., Kondilenko, V., Alexandrovski, A., Huang, J., Urbanek, K., Fejer, M.M., Optical properties and ferroelectric engineering of vapor-Transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion (2007) J Appl Phys, 101, p. 093108; Shur, V.Y.A., Akhmatkhanov, A.R., Chuvakova, M.A., Baturin, I.S., Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate (2014) Appl Phys Lett, 105, p. 152905; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Shishkina, E.V., Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO 3 produced by vapor transport equilibration (2012) J Appl Phys, 111, p. 014101; Bryan, D.A., Gerson, R., Tomaschke, H.E., Increased optical damage resistance in lithium niobate (1984) Appl Phys Lett, 44, pp. 847-849; Furukawa, Y., Kitamura, K., Alexandrovski, A., Route, R.K., Fejer, M.M., Foulon, G., Green-induced infrared absorption in MgO doped LiNbO 3 (2001) Appl Phys Lett, 78, p. 1970; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Micro-And nano-domain engineering in lithium niobate (2015) Appl Phys Rev, 2, p. 040604; Shur, V.Y.A., Kinetics of ferroelectric domains: Application of general approach to LiNbO 3 and LiTaO 3 (2006) J Mater Sci, 41, pp. 199-210; Shur, V.Y.A., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, pp. 97-106; Shur, V.Y.A., Popov, Y.A., Korovina, N.V., Bound internal field in lead germanate (1984) Sov Phys Sol State, 26, pp. 471-474; Shur, V.Y.A., Gruverman, A.L., Rumyantsev, E.L., Dynamics of domain structure in uniaxial ferroelectrics (1990) Ferroelectrics, 111, pp. 123-131; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Nebogatikov, M.S., Dolbilov, M.A., Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family (2010) Phys Solid State, 52, pp. 2147-2153; Baturin, I.S., Akhmatkhanov, A.R., Shur, V.Y.A., Nebogatikov, M.S., Dolbilov, M.A., Rodina, E.A., Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family (2008) Ferroelectrics, 374, pp. 1-13; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , New York: Consultants Bureau; Shur, V.Y.A., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., Shape of isolated domains in lithium tantalate single crystals at elevated temperatures (2013) Appl Phys Lett, 103, p. 242903; Cabrera, J.M., Olivares, J., Carrascosa, M., Rams, J., Müller, R., Diéguez, E., Hydrogen in lithium niobate (1996) Adv Phys, 45, pp. 349-392; Buse, K., Breer, S., Peithmann, K., Kapphan, S., Gao, M., Krätzig, E., Buse, K., Kratzig, E., Origin of thermal fixing in photorefractive lithium niobate crystals (1997) Phys Rev B., 56, pp. 1225-1235; Esin, A.A., Akhmatkhanov, A.R., Baturin, I.S., Shur, V.Y.A., Increase and relaxation of abnormal conduction current in lithium niobate crystals with charged domain walls (2015) Ferroelectrics, 476, pp. 94-104; Shur, V.Y.A., Baturin, I.S., Akhmatkhanov, A.R., Chezganov, D.S., Esin, A.A., Time-dependent conduction current in lithium niobate crystals with charged domain walls (2013) Appl Phys Lett, 103, p. 102905; Crassous, A., Sluka, T., Tagantsev, A.K., Setter, N., Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films (2015) Nat Nanotechnol, 10, pp. 614-618; Damm, S., Carville, N.C., Manzo, M., Gallo, K., Lopez, S.G., Keyes, T.E., Forster, R.J., Rice, J.H., Surface enhanced luminescence and Raman scattering from ferroelectrically defined Ag nanopatterned arrays (2013) Appl Phys Lett, 103, p. 083105; Damm, S., Carville, N.C., Rodriguez, B.J., Manzo, M., Gallo, K., Rice, J.H., Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods (2012) J Phys Chem C., 116, pp. 26543-26550; Habicht, S., Nemanich, R.J., Gruverman, A., Physical adsorption on ferroelectric surfaces: Photoinduced and thermal effects (2008) Nanotechnology, 19, p. 495303; Nguyen, A., Sharma, P., Scott, T., Preciado, E., Klee, V., Sun, D., Lu, I.H., Dowben, P.A., Toward ferroelectric control of monolayer MoS 2 (2015) Nano Lett, 15, pp. 3364-3369; Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features (2001) J Appl Phys, 90, pp. 1387-1402; Lou, X.J., Polarization fatigue in ferroelectric thin films and related materials (2009) J Appl Phys, 105, p. 024101; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Fatigue effect in ferroelectric crystals: Growth of the frozen domains (2012) J Appl Phys, 111, p. 124111; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Fatigue Effect in stoichiometric LiTaO 3 crystals produced by vapor transport equilibration (2012) Ferroelectrics, 426, pp. 142-151; Pritulenko, A.S., Yatsenko, A.V., Yevdokimov, S.V., Analysis of the nature of electrical conductivity in nominally undoped LiNbO 3 crystals (2015) Crystallogr Reports, 60, pp. 267-272; Meyer, N., Nataf, G.F., Granzow, T., Field induced modification of defect complexes in magnesium-doped lithium niobate (2014) J Appl Phys, 116, p. 244102; Dhar, A., Singh, N., Singh, R.K., Singh, R., Low temperature dc electrical conduction in reduced lithium niobate single crystals (2013) J Phys Chem Solids, 74, pp. 146-151; Klauer, S., Woehlecke, M., Kapphan, S., Influence of H-D isotopic substitution on the protonic conductivity of LiNbO 3 (1992) Phys Rev B., 45, pp. 2786-2799; Singh, K., Electrical conductivity of non-stoichiometric LiNbO 3 single crystals (2004) Ferroelectrics, 306, pp. 79-92; Yevdokimov, S.V., Yatsenko, A.V., Specific features of the dark conductivity in lithium niobate crystals of congruent composition (2006) Phys Solid State, 48, pp. 336-339; Wang, Q., Leng, S., Yu, Y., Activation energy of small polarons and conductivity in LiNbO 3 and LiTaO 3 crystals (1996) Phys Status Solidi, 194, pp. 661-665; Mansingh, A., Dhar, A., The AC conductivity and dielectric constant of lithium niobate single crystals (1985) J Phys D Appl Phys, 18, pp. 2059-2071; El-Bachiri, A., Bennani, F., Bousselamti, M., Ionic and polaronic conductivity of lithium niobate (2014) Spectrosc Lett, 47, pp. 374-380; Ruprecht, B., Rahn, J., Schmidt, H., Heitjans, P., Low-Temperature DC conductivity of LiNbO 3 single crystals (2012) Zeitschrift für Phys Chemie, 226 (56), pp. 431-437; Rahn, J., Hüger, E., Dörrer, L., Ruprecht, B., Heitjans, P., Schmidt, H., Li self-diffusion in lithium niobate single crystals at low temperatures (2012) Phys Chem Chem Phys, 14, pp. 2427-2433; Brands, K., Falk, M., Haertle, D., Woike, T., Buse, K., Impedance spectroscopy of iron-doped lithium niobate crystals (2008) Appl Phys B., 91, pp. 279-281; Bhaumik, I., Ganesamoorthy, S., Bhatt, R., Karnal, A.K., Wadhawan, V.K., Gupta, P.K., Kumaragurubaran, S., Nakamura, M., Dielectric and ac conductivity studies on undoped and MgO-doped near-stoichiometric lithium tantalate crystals (2008) J Appl Phys, 103, pp. 1-6; Chen, R.H., Chen, L.-F., Chia, C.-T., Impedance spectroscopic studies on congruent LiNbO 3 single crystal (2007) J Phys Condens Matter, 19, p. 086225; De Miguel-Sanz, E., Carrascosa, M., Arizmendi, L., Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO 3:Fe (2002) Phys Rev B., 65, p. 165101; Yang, Y., Psaltis, D., Luennemann, M., Berben, D., Hartwig, U., Buse, K., Photorefractive properties of lithium niobate crystals doped with manganese (2003) J Opt Soc Am B., 20, pp. 1491-1502; Shur, V.Y.A., Mingaliev, E.A., Lebedev, V.A., Kuznetsov, D.K., Fursov, D.V., Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals (2013) J Appl Phys, 113, p. 187211; Baturin, I.S., Konev, M.V., Akhmatkhanov, A.R., Lobov, A.I., Shur, V.Y.A., Investigation of jerky domain wall motion in lithium niobate (2008) Ferroelectrics, 374, pp. 136-143 |