The electronic conductivity in single crystals of lithium niobate and lithium tantalate family / Esin A.A., Akhmatkhanov A.R., Shur V.Y. // Ferroelectrics. - 2016. - V. 496, l. 1. - P. 102-109.

ISSN:
00150193
Type:
Conference Paper
Abstract:
The electronic conductivity was measured in single crystals of lithium niobate and lithium tantalate family at elevated temperatures using direct electrometric method with original technique of compensation of pyroelectric current. Experimentally measured temperature dependences of the bulk electrical conductivity along the polar direction followed the Arrhenius law with activation energy ranging from 1.0 to 1.2 eV. It was shown that bulk intrinsic conductivity became the main mechanism of screening at the temperatures above 160°C. The conductivity anisotropy was studied in MgOLN single crystals. © 2016 Ural Federal University.
Author keywords:
activation energy; bulk conductivity; conductivity anisotropy; Lithium niobate; lithium tantalate
Index keywords:
Activation energy; Anisotropy; Chemical activation; Electric conductivity; Lithium; Niobium compounds; Temperature distribution; Bulk conductivities; Electrical conductivity; Electronic conductivity;
DOI:
10.1080/00150193.2016.1157438
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964497618&doi=10.1080%2f00150193.2016.1157438&partnerID=40&md5=f2c62a156daab7c8a32337d313a1ea84
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964497618&doi=10.1080%2f00150193.2016.1157438&partnerID=40&md5=f2c62a156daab7c8a32337d313a1ea84
Affiliations Institute of the Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Labfer Ltd., Ekaterinburg, Russian Federation
Author Keywords activation energy; bulk conductivity; conductivity anisotropy; Lithium niobate; lithium tantalate
Funding Details UID RFMEFI59414X0011, Ministry of Education and Science of the Russian Federation
Funding Text The research was made possible in part by the Ministry of Education and Science of the Russian Federation (UID RFMEFI59414X0011), by RFBR (Grants 13-02-01391-a, 14-02-90447-Ukr-a) and by Government of the Russian Federation (Act 211, Agreement 02.A03.21.0006).
References Gualtieri, J.G., Kosinski, J.A., Ballato, A., Piezoelectric materials for acoustic wave applications (1994) IEEE Trans Ultrason Ferroelectr Freq Control, 41, pp. 53-59; Arizmendi, L., Photonic applications of lithium niobate crystals (2004) Phys Stat Sol, 201, pp. 253-283; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J Nonlinear Opt Phys Mater, 6, pp. 549-592; Fejer, M.M., Magel, G.A., Jundt, D.H., Byer, R.L., Quasi-phase-matched second harmonic generation: Tuning and tolerances (1992) IEEE J Quantum Electron, 28, pp. 2631-2654; Wong, K.K., (2002) Properties of Lithium Niobate, , London: IET; Volk, T., Wohlecke, M., (2008) Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, , Berlin, Heidelberg: Springer-Verlag; Furukawa, Y., Kitamura, K., Suzuki, E., Niwa, K., Stoichiometric LiTaO 3 single crystal growth by double crucible Czochralski method using automatic powder supply system (1999) J Cryst Growth, 197, pp. 889-895; Bordui, P.F., Norwood, R.G., Jundt, D.H., Fejer, M.M., Preparation and characterization of off-congruent lithium niobate crystals (1992) J Appl Phys, 71, pp. 875-879; Malovichko, G.I., Grachev, V.G., Kokanyan, E.P., Schirmer, O.F., Betzler, K., Gather, B., Jermann, F., Wöhlecke, M., Characterization of stoichiometric LiNbO 3 grown from melts containing K 2O (1993) Appl Phys A Sol Surf, 56, pp. 103-108; Furukawa, Y., Sato, M., Nitanda, F., Ito, K., Growth and characterization of MgO-doped LiNbO 3 for electro-optic devices (1990) J Cryst Growth, 99, pp. 832-836; Hum, D.S., Route, R.K., Miller, G.D., Kondilenko, V., Alexandrovski, A., Huang, J., Urbanek, K., Fejer, M.M., Optical properties and ferroelectric engineering of vapor-Transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion (2007) J Appl Phys, 101, p. 093108; Shur, V.Y.A., Akhmatkhanov, A.R., Chuvakova, M.A., Baturin, I.S., Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate (2014) Appl Phys Lett, 105, p. 152905; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Shishkina, E.V., Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO 3 produced by vapor transport equilibration (2012) J Appl Phys, 111, p. 014101; Bryan, D.A., Gerson, R., Tomaschke, H.E., Increased optical damage resistance in lithium niobate (1984) Appl Phys Lett, 44, pp. 847-849; Furukawa, Y., Kitamura, K., Alexandrovski, A., Route, R.K., Fejer, M.M., Foulon, G., Green-induced infrared absorption in MgO doped LiNbO 3 (2001) Appl Phys Lett, 78, p. 1970; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Micro-And nano-domain engineering in lithium niobate (2015) Appl Phys Rev, 2, p. 040604; Shur, V.Y.A., Kinetics of ferroelectric domains: Application of general approach to LiNbO 3 and LiTaO 3 (2006) J Mater Sci, 41, pp. 199-210; Shur, V.Y.A., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, pp. 97-106; Shur, V.Y.A., Popov, Y.A., Korovina, N.V., Bound internal field in lead germanate (1984) Sov Phys Sol State, 26, pp. 471-474; Shur, V.Y.A., Gruverman, A.L., Rumyantsev, E.L., Dynamics of domain structure in uniaxial ferroelectrics (1990) Ferroelectrics, 111, pp. 123-131; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Nebogatikov, M.S., Dolbilov, M.A., Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family (2010) Phys Solid State, 52, pp. 2147-2153; Baturin, I.S., Akhmatkhanov, A.R., Shur, V.Y.A., Nebogatikov, M.S., Dolbilov, M.A., Rodina, E.A., Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family (2008) Ferroelectrics, 374, pp. 1-13; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , New York: Consultants Bureau; Shur, V.Y.A., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., Shape of isolated domains in lithium tantalate single crystals at elevated temperatures (2013) Appl Phys Lett, 103, p. 242903; Cabrera, J.M., Olivares, J., Carrascosa, M., Rams, J., Müller, R., Diéguez, E., Hydrogen in lithium niobate (1996) Adv Phys, 45, pp. 349-392; Buse, K., Breer, S., Peithmann, K., Kapphan, S., Gao, M., Krätzig, E., Buse, K., Kratzig, E., Origin of thermal fixing in photorefractive lithium niobate crystals (1997) Phys Rev B., 56, pp. 1225-1235; Esin, A.A., Akhmatkhanov, A.R., Baturin, I.S., Shur, V.Y.A., Increase and relaxation of abnormal conduction current in lithium niobate crystals with charged domain walls (2015) Ferroelectrics, 476, pp. 94-104; Shur, V.Y.A., Baturin, I.S., Akhmatkhanov, A.R., Chezganov, D.S., Esin, A.A., Time-dependent conduction current in lithium niobate crystals with charged domain walls (2013) Appl Phys Lett, 103, p. 102905; Crassous, A., Sluka, T., Tagantsev, A.K., Setter, N., Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films (2015) Nat Nanotechnol, 10, pp. 614-618; Damm, S., Carville, N.C., Manzo, M., Gallo, K., Lopez, S.G., Keyes, T.E., Forster, R.J., Rice, J.H., Surface enhanced luminescence and Raman scattering from ferroelectrically defined Ag nanopatterned arrays (2013) Appl Phys Lett, 103, p. 083105; Damm, S., Carville, N.C., Rodriguez, B.J., Manzo, M., Gallo, K., Rice, J.H., Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods (2012) J Phys Chem C., 116, pp. 26543-26550; Habicht, S., Nemanich, R.J., Gruverman, A., Physical adsorption on ferroelectric surfaces: Photoinduced and thermal effects (2008) Nanotechnology, 19, p. 495303; Nguyen, A., Sharma, P., Scott, T., Preciado, E., Klee, V., Sun, D., Lu, I.H., Dowben, P.A., Toward ferroelectric control of monolayer MoS 2 (2015) Nano Lett, 15, pp. 3364-3369; Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features (2001) J Appl Phys, 90, pp. 1387-1402; Lou, X.J., Polarization fatigue in ferroelectric thin films and related materials (2009) J Appl Phys, 105, p. 024101; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Fatigue effect in ferroelectric crystals: Growth of the frozen domains (2012) J Appl Phys, 111, p. 124111; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Fatigue Effect in stoichiometric LiTaO 3 crystals produced by vapor transport equilibration (2012) Ferroelectrics, 426, pp. 142-151; Pritulenko, A.S., Yatsenko, A.V., Yevdokimov, S.V., Analysis of the nature of electrical conductivity in nominally undoped LiNbO 3 crystals (2015) Crystallogr Reports, 60, pp. 267-272; Meyer, N., Nataf, G.F., Granzow, T., Field induced modification of defect complexes in magnesium-doped lithium niobate (2014) J Appl Phys, 116, p. 244102; Dhar, A., Singh, N., Singh, R.K., Singh, R., Low temperature dc electrical conduction in reduced lithium niobate single crystals (2013) J Phys Chem Solids, 74, pp. 146-151; Klauer, S., Woehlecke, M., Kapphan, S., Influence of H-D isotopic substitution on the protonic conductivity of LiNbO 3 (1992) Phys Rev B., 45, pp. 2786-2799; Singh, K., Electrical conductivity of non-stoichiometric LiNbO 3 single crystals (2004) Ferroelectrics, 306, pp. 79-92; Yevdokimov, S.V., Yatsenko, A.V., Specific features of the dark conductivity in lithium niobate crystals of congruent composition (2006) Phys Solid State, 48, pp. 336-339; Wang, Q., Leng, S., Yu, Y., Activation energy of small polarons and conductivity in LiNbO 3 and LiTaO 3 crystals (1996) Phys Status Solidi, 194, pp. 661-665; Mansingh, A., Dhar, A., The AC conductivity and dielectric constant of lithium niobate single crystals (1985) J Phys D Appl Phys, 18, pp. 2059-2071; El-Bachiri, A., Bennani, F., Bousselamti, M., Ionic and polaronic conductivity of lithium niobate (2014) Spectrosc Lett, 47, pp. 374-380; Ruprecht, B., Rahn, J., Schmidt, H., Heitjans, P., Low-Temperature DC conductivity of LiNbO 3 single crystals (2012) Zeitschrift für Phys Chemie, 226 (56), pp. 431-437; Rahn, J., Hüger, E., Dörrer, L., Ruprecht, B., Heitjans, P., Schmidt, H., Li self-diffusion in lithium niobate single crystals at low temperatures (2012) Phys Chem Chem Phys, 14, pp. 2427-2433; Brands, K., Falk, M., Haertle, D., Woike, T., Buse, K., Impedance spectroscopy of iron-doped lithium niobate crystals (2008) Appl Phys B., 91, pp. 279-281; Bhaumik, I., Ganesamoorthy, S., Bhatt, R., Karnal, A.K., Wadhawan, V.K., Gupta, P.K., Kumaragurubaran, S., Nakamura, M., Dielectric and ac conductivity studies on undoped and MgO-doped near-stoichiometric lithium tantalate crystals (2008) J Appl Phys, 103, pp. 1-6; Chen, R.H., Chen, L.-F., Chia, C.-T., Impedance spectroscopic studies on congruent LiNbO 3 single crystal (2007) J Phys Condens Matter, 19, p. 086225; De Miguel-Sanz, E., Carrascosa, M., Arizmendi, L., Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO 3:Fe (2002) Phys Rev B., 65, p. 165101; Yang, Y., Psaltis, D., Luennemann, M., Berben, D., Hartwig, U., Buse, K., Photorefractive properties of lithium niobate crystals doped with manganese (2003) J Opt Soc Am B., 20, pp. 1491-1502; Shur, V.Y.A., Mingaliev, E.A., Lebedev, V.A., Kuznetsov, D.K., Fursov, D.V., Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals (2013) J Appl Phys, 113, p. 187211; Baturin, I.S., Konev, M.V., Akhmatkhanov, A.R., Lobov, A.I., Shur, V.Y.A., Investigation of jerky domain wall motion in lithium niobate (2008) Ferroelectrics, 374, pp. 136-143
Correspondence Address Esin, A.A.; Institute of the Natural Sciences, Ural Federal UniversityRussian Federation; email: alexander.esin@labfer.usu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus