Spin coating formation of self-assembled ferroelectric β-glycine films / Zelenovskiy P., Vasileva D., Nuraeva A., Vasilev S., Khazamov T., Dikushina E., Shur V.Y., Kholkin A.L. // Ferroelectrics. - 2016. - V. 496, l. 1. - P. 10-19.

ISSN:
00150193
Type:
Conference Paper
Abstract:
The formation of self-assembled ferroelectric glycine films of various morphologies by spin coating technique was investigated. The film morphology varied from dendritic feather-like structure to arrays of individual micro- and nanoislands and 15 nm-thick layers. It was confirmed by confocal Raman microscopy that most of the films belonged to ferroelectric beta phase. Piezoelectric properties and domain structure of the films were studied by piezoresponse force microscopy. © 2016 Taylor & Francis Group, LLC.
Author keywords:
glycine; organic ferroelectrics; piezoelectrics; self-assembling; Spin coating
Index keywords:
Amino acids; Coatings; Ferroelectric materials; Ferroelectricity; Scanning probe microscopy; Spin coating; Coating formation; Confocal Raman microscopy; Domain structure; Feather-like structure; Piezo
DOI:
10.1080/00150193.2016.1157434
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964510308&doi=10.1080%2f00150193.2016.1157434&partnerID=40&md5=f0eef7e0bd9434afe4e701a5d4354d87
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964510308&doi=10.1080%2f00150193.2016.1157434&partnerID=40&md5=f0eef7e0bd9434afe4e701a5d4354d87
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Physics Department, CICECO, Materials Institute of Aveiro, Aveiro, Portugal
Author Keywords glycine; organic ferroelectrics; piezoelectrics; self-assembling; Spin coating
Funding Details UID RFMEFI59414X0011, Ministry of Education and Science of the Russian Federation
Funding Text This work was developed in the scope of the project CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when applicable cofinanced in part by FEDER under the PT2020 Partnership Agreement, by the Ministry of Education and Science of the Russian Federation (agreement UID RFMEFI59414X0011), by Russian Federation President grant for young scientists MK-6554.2015.2 and by the Government of the Russian Federation (Act 211, Agreement 02.A03.21.0006).
References Lemanov, V.V., Popov, S.N., Pankova, G.A., Protein amino acid crystals: Structure, symmetry, physical properties (2003) Ferroelectrics, 285, pp. 207-216; Lemanov, V.V., Ferroelectric and piezoelectric properties of protein amino acids and their compounds (2012) Phys Solid State, 54, pp. 1841-1842; Lemanov, M., Lemanov, A.O.D.S., Almeida, J.M.A., Sasaki, J.M., Cardoso, L.P., Piezoelectric coefficients of L-histidine hydrochloride monohydrate obtained by synchrotron X-ray Renninger scanning (2007) J Phys Condens Matter, 19, pp. 1062-1819. , A.S. de, and; Heredia, A., Meunier, V., Bdikin, I.K., Gracio, J., Balke, N., Jesse, S., Tselev, A., Kholkin, A.L., Nanoscale ferroelectricity in crystalline γ-glycine (2012) Adv Funct Mater, 22, pp. 2996-3003; Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., Rosenman, G., Strong piezoelectricity in bioinspired peptide nanotubes (2010) ACS Nano, 4, pp. 610-614; Vijayan, N., Rajasekaran, S., Bhagavannarayana, G., Ramesh Babu, R., Gopalakrishnan, R., Palanichamy, M., Ramasamy, P., Growth and characterization of nonlinear optical amino acid single crystal: L-Alanine (2006) Cryst Growth des, 6, pp. 2441-2445; Seyedhosseini, E., Ivanov, M., Bystrov, V., Bdikin, I., Zelenovskiy, P., Shur, V.Y.A., Kudryavtsev, A., Kholkin, A.L., Growth and nonlinear optical properties of β-glycine crystals grown on Pt substrates (2014) Cryst Growth des, 14, pp. 2831-2837; Bystrov, V.S., Bdikin, I., Heredia, A., Pullar, R.C., Mishina, E., Sigov, A.S., Kholkin, A.L., Piezoelectricity and ferroelectricity in biomaterials: From proteins to self-Assembled peptide nanotubes (2012) Piezoelectric Nanomaterials for Biomedical Applications, pp. 187-211. , In: G. Ciofani, and A. Menciassi, eds. Berlin, Heidelberg: Springer-Verlag; Fleck, M., Petrosyan, A.M., (2014) Salts of Amino Acids: Crystallization, Structure, Properties, , Berlin, Heidelberg: Springer-Verlag; Aleman, C., Bianco, A., Venanzi, M., (2013) Peptide Materials: From Nanostructures to Applications, , eds. Chichester: Wiley-VCH; Rica, R., Pejoux, C., Matsui, H., Assemblies of functional peptides and their applications in building blocks for biosensors (2011) Adv Funct Mater, 21, pp. 1018-1026; Bosne, E.D., Heredia, A., Kopyl, S., Karpinsky, D.V., Pinto, A.G., Kholkin, A.L., Piezoelectric resonators based on self-Assembled diphenylalanine microtubes (2013) Appl Phys Lett, 102, p. 073504; Han, H., Kim, Y., Alexe, M., Hesse, D., Lee, W., Nanostructured ferroelectrics: Fabrication and structure-property relations (2011) Adv Mat, 23, pp. 4599-4613; Hu, Z., Baralia, G., Bayot, V., Gohy, J.F., Jonas, A.M., Nanoscale control of polymer crystallization by nanoimprint lithography (2005) Nano Lett, 5, pp. 1738-1743; Hu, Z., Tian, M., Nysten, B., Jonas, A.M., Regular arrays of highly ordered ferroelectric polymer nanostructures for nonvolatile low-voltage memories (2008) Nat Mater, 8, pp. 62-67; Harnagea, C., Alexe, M., Schilling, J., Choi, J., Wehrspohn, R.B., Hesse, D., Gosele, U., Mesoscopic ferroelectric cell arrays prepared by imprint lithography (2003) Appl Phys Lett, 83, pp. 1827-1829; Roelofs, A., Schneller, T., Szot, K., Waser, R., Towards the limit of ferroelectric nanosized grains (2003) Nanotechnology, 14, pp. 250-253; Weill, A., The spin coating process mechanism (1986) The Physics and Fabrication of Microstructures and Microdevices, pp. 51-58. , In: M. J. Kelly, and C. Weisbuch, eds. Berlin, Heidelberg, New York: Springer-Verlag; Jenekhe, S.A., Polymer processing to thin films for microelectronic applications (1987) Polymers for High Technology. ACS Symposium Series, pp. 261-269. , In: M. J. Bowden, and S. R. Turner, eds. Washington, DC: American Chemical Society; Tolan, M., Seek, O.H., Schlomka, J.P., Press, W., Wang, J., Sinha, S.K., Li, Z., Sokolov, J., Evidence for capillary waves on dewetted polymer film surfaces: A combined X-ray and atomic force microscopy study (1998) Phys Rev Lett, 81, pp. 2731-2734; Tolan, M., (1999) X-ray Scattering from Soft Matter Thin Films, Materials Science and Basic Research, Springer Tracts on Modern Physics, , Berlin, Heidelberg, New York: Springer-Verlag; Pichumani, M., Bagheri, P., Poduska, K.M., González-Viñas, W., Yethiraj, A., Dynamics, crystallization and structures in colloid spin coating (2013) Soft Matter, 9, pp. 3220-3229; Tyona, M.D., A theoretical study on spin coating technique (2013) Adv Mater Res, 2, pp. 195-208; Schubert, D.W., Dunkel, T., Spin coating from a molecular point of view: Its concentration regimes, influence of molar mass and distribution (2003) Mater Res Innov, 7, pp. 314-321; Hofmann, G., Neumann, N., Budzier, H., PyI12. Pyroelectric single-element detectors and arrays based on modified TGS (1992) Ferroelectrics, 133, pp. 41-45; Pepinsky, R., Vedam, K., Hoshino, S., Okaya, Y., Ferroelectricity in di-glycine nitrate (NH 2CH 2COOH) 2·HNO 3 (1958) Phys Rev, 111, pp. 430-432; Picknett, R.G., Bexon, R., The evaporation of sessile or pendant drops in still air (1977) J Colloid Interf Sci, 61, pp. 336-350; Hu, H., Larson, R.G., Marangoni effect reverses coffee-ring depositions (2006) J Phys Chem B., 110, pp. 7090-7094; Hu, H., Larson, R.G., Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet (2005) Langmuir, 21, pp. 3972-3980; Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A., Contact line deposits in an evaporating drop (2000) Phys Rev E., 62, p. 756; Lebedev-Stepanov, P.V., Karabut, T.A., Chernyshov, N.A., Rybak, S.A., Investigation of the shape and stability of a liquid drop on a rotating substrate (2011) Acoustical Phys, 57, pp. 320-325; Isakov, D., Petukhova, D., Vasilev, S., Nuraeva, A., Khazamov, T., Seyedhosseini, E., Zelenovskiy, P., Kholkin, A.L., In situ observation of the humidity controlled polymorphic phase transformation in glycine microcrystals (2014) Cryst Growth des, 14, pp. 4138-4142; Jiang, Q., Shtukenberg, A.G., Ward, M.D., Hu, C., Non-Topotactic Phase Transformations in Single Crystals of β-Glycine (2015) Cryst Growth des, 15, pp. 2568-2573; Seyedhosseini, E., Kholkin, A.L., Vasileva, D., Nuraeva, A., Vasilev, S., Zelenovskiy, P.S., Shur, V.Y.A., Patterning and nanoscale characterization of ferroelectric amino acid beta-glycine (2015) Joint IEEE International Symposium on the Applications of Ferroelectric, Int. Symposium on Integrated Functionalities and Piezoelectric Force Microscopy Workshop (ISAF/ISIF/PFM, pp. 207-210. , In: IEEE; Ievlev, A.V., Alikin, D.O., Morozovska, A.N., Varenyk, O.V., Eliseev, E.A., Kholkin, A.L., Shur, V.Y.A., Kalinin, S.V., Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals (2015) ACS Nano, 9, pp. 769-777; Alikin, D.O., Ievlev, A.V., Turygin, A.P., Lobov, A.I., Kalinin, S.V., Shur, V.Y.A., Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals (2015) Appl Phys Lett, 106, p. 182902
Correspondence Address Zelenovskiy, P.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: zelenovskiy@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus