Formation of self-assembled pattern of glycine microcrystals: Experiment and computer simulation / Shur V.Y., Bykov D.A., Romanyuk K.N., Rumyantsev E.L., Kadushnikov R.M., Mizgulin V.V., Seyedhosseini E., Kholkin A.L. // Ferroelectrics. - 2016. - V. 496, l. 1. - P. 20-27.

ISSN:
00150193
Type:
Conference Paper
Abstract:
The films of glycine consisting of isolated microcrystals were prepared by spin coating and drying of the aqueous solution. Drying leads to dewetting (arising and growth of the holes) and formation of quasi-regular arrays of microcrystals that form the net structure consisting of Voronoi cells. The time dependence of the hole boundary velocity leading to formation of the straight net segments was proposed. Numerical model of hole nucleation and growth by boundary motion was proposed for the computer simulation. The coincidence of the simulated structures obtained within Kolmogorov alpha-model with experimental structures confirmed the validity of proposed approach. © 2016 Taylor & Francis Group, LLC.
Author keywords:
computer simulation; Crystallization; dewetting; glycine; microcrystals; self-assembling
Index keywords:
Amino acids; Computer simulation; Crystallization; Solutions; Boundary motion; De-wetting; Net structures; Nucleation and growth; Self-assembled patterns; Self-assembling; Simulated structure; Time de
DOI:
10.1080/00150193.2016.1155401
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964426575&doi=10.1080%2f00150193.2016.1155401&partnerID=40&md5=d11a5b1adb53f16f0c218c9402a0a6a6
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964426575&doi=10.1080%2f00150193.2016.1155401&partnerID=40&md5=d11a5b1adb53f16f0c218c9402a0a6a6
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; SIAMS, Ekaterinburg, Russian Federation; Department of Physics, CICECO, University of Aveiro, Aveiro, Portugal
Author Keywords computer simulation; Crystallization; dewetting; glycine; microcrystals; self-assembling
Funding Details UID RFMEFI59414X0011, Ministry of Education and Science of the Russian Federation
Funding Text The research was made possible in part by the Ministry of Education and Science of the Russian Federation (UID RFMEFI59414X0011), by Government of the Russian Federation (Act 211, Agreement 02.A03.21.0006), by Portuguese Foundation for Science and Technology (FCT) (grant SFRH/BPD/ 88362/2012). The work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and, when appropriate, co-funded by FEDER under the PT2020 Partnership Agreement.
References Aizenberg, J., Crystallization in patterns: A bio-inspired approach (2004) Adv Mater, 16, pp. 1295-1302; Tawfick, S., De Volder, M., Copic, D., Park, S.J., Oliver, C.R., Polsen, E.S., Hart, A.J., Engineering of micro and nanostructured surfaces with anisotropic geometries and properties (2012) Adv Mater, 24, pp. 1628-1674; Gentili, D., Foschi, G., Valle, F., Cavallini, M., Biscarini, F., Applications of dewetting in micro and nanotechnology (2012) Chem Soc Rev, 41, pp. 4430-4443; Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J.Y., Haas, S., Chiba, R., Hasegawa, T., Inkjet printing of single-crystal films (2011) Nature, 475, pp. 364-367; Uchino, K., (2000) Ferroelectric Devices, , New York: CRC Press; Horiuchi, S., Tokura, Y., Organic ferroelectrics (2008) Nat Mater, 7, pp. 357-366; Naber, R.C., Asadi, K., Blom, P.W., De Leeuw, D.M., De Boer, B., Organic nonvolatile memory devices based on ferroelectricity (2010) Adv Mater, 22, pp. 933-945; Han, H., Kim, Y., Alexe, M., Hesse, D., Lee, W., Nanostructured ferroelectrics: Fabrication and structure-property relations (2011) Adv Mater, 23, pp. 4599-4613; Khan, M.A., Bhansali, U.S., Alshareef, H.N., High performance non volatile organic ferroelectric memory on banknotes (2012) Adv Mater, 24, pp. 2165-2170; Roelofs, A., Schneller, T., Szot, K., Waser, R., Towards the limit of ferroelectric nanosized grains (2003) Nanotechnology, 14, pp. 250-253; Harrington, G.F., Campbell, J.M., Christenson, H.K., Crystal patterns created by rupture of a thin film (2013) Cryst Growth des, 13, pp. 5062-5067; Seyedhosseini, E., Kholkin, A.L., Vasileva, D., Nuraeva, A., Vasilev, S., Zelenovskiy, P., Shur, V.Y.A., Patterning and Nanoscale Characterization of Ferroelectric Amino Acid Beta-glycine, pp. 207-210. , In: Applications of Ferroelectric, International Symposium on Integrated Functionalities and Piezoelectric Force Microscopy Workshop (ISAF/ISIF/PFM). IEEE; 2015 May; Heredia, A., Meunier, V., Bdikin, I.K., Gracio, J., Balke, N., Jesse, S., Kholkin, A.L., Nanoscale ferroelectricity in crystalline γ-glycine (2012) Adv Func Mater, 22, pp. 2996-3003; Craster, R.V., Matar, O.K., Dynamics and stability of thin liquid films (2009) Rev Mod Phys, 81, pp. 1131-1198; Jacobs, K., Herminghaus, S., Mecke, K.R., Thin liquid polymer films rupture via defects (1998) Langmuir, 14, pp. 965-969; Thiele, U., Mertig, M., Pompe, W., Dewetting of an evaporating thin liquid film: Heterogeneous nucleation and surface instability (1998) Phys Rev Lett, 80, pp. 2869-2872; Voronoi, G., Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. sur quelques propriétés des formes quadratiques positives parfaites (1908) Journal für Die Reine und Angewandte Mathematik, 133, pp. 97-178; Kolmogorov, A.N., On the statistical theory of the crystallization of metals (1937) Bull Acad Sci USSR Math ser, 1, pp. 355-359; Avrami, M., Kinetics of phase change i general theory (1939) J Chem Phys, 7, pp. 1103-1112; Shur, V.Y.A., Rumyantsev, E.L., Makarov, S.D., Kinetics of phase transformations in real ginite systems: Application to switching in ferroelectrics (1998) J App Phys, 84, pp. 445-451
Correspondence Address Shur, V.Y.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: vladimir.shur@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus