Piezoelectric and ferroelectric properties of organic single crystals and films derived from chiral 2-methoxy and 2-amino acids / Nuraeva A.S., Vasileva D.S., Vasilev S.G., Zelenovskiy P.S., Gruzdev D.A., Krasnov V.P., Olshevskaya V.A., Kalinin V.N., Shur V.Y. // Ferroelectrics. - 2016. - V. 496, l. 1. - P. 1-9.

ISSN:
00150193
Type:
Conference Paper
Abstract:
Local piezoelectric and ferroelectric properties as well as morphology of single crystals and films of two novel chiral organic compounds derived from chiral 2-methoxy and 2-amino acids have been investigated. The crystals demonstrated piezoelectric response exceeding that of lithium niobate. The piezoelectric response was registered also in compound films. Piezoelectric properties and domain structure of single crystals and films have been studied by piezoresponse force microscopy. © 2016 Taylor & Francis Group, LLC.
Author keywords:
Chiral compounds; organic ferroelectrics; piezoelectric film; piezoelectric force microscopy
Index keywords:
Crystal structure; Crystals; Ferroelectric films; Ferroelectric materials; Ferroelectricity; Piezoelectricity; Scanning probe microscopy; Chiral compounds; Ferroelectric property; Organic single cryst
DOI:
10.1080/00150193.2016.1155037
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964507663&doi=10.1080%2f00150193.2016.1155037&partnerID=40&md5=e0121a3f43ad9b7302d0d72c871aa737
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964507663&doi=10.1080%2f00150193.2016.1155037&partnerID=40&md5=e0121a3f43ad9b7302d0d72c871aa737
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russian Federation; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
Author Keywords Chiral compounds; organic ferroelectrics; piezoelectric film; piezoelectric force microscopy
Funding Details 16-33-60122, RFBR, Russian Foundation for Basic Research
Funding Text The research was made possible in part by the Ministry of Education and Science of Russian Federation (UID RFMEFI59414X0011), by Government of the Russian Federation (Act 211, Agreement 02. A03.21.0006) and by Russian Foundation for Basic Research (Grant 16-33-60122).
References Kitaev, Y.E., Panfilov, A.G., Smirnov, V.P., Tronc, P., Why biomolecules prefer only a few crystal structures (2003) Phys Rev e, 67, p. 011907; Lemanov, V.V., Piezo-, pyro-, and ferroelectricity in biological materials, piezoelectric materials (2000) Advances in Science, Technology and Applications, p. 1. , In: C. Galassi, M. Dinescu, K. Uchino, M. Sayer, eds. Netherlands: Springer; Lemanov, V.V., Popov, S.N., Pankova, G.A., Piezoelectric properties of crystals of some protein amino acids and their related compounds (2002) Phys Solid State, 44, pp. 1929-1935; Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., Rosenman, G., Strong piezoelectricity in bioinspired peptide nanotubes (2010) ACS Nano, 4, pp. 610-614; Zelenovskiy, P.S., Shur, V.Y.A., Nuraeva, A.S., Vasilev, S.G., Vasileva, D.S., Alikin, D.O., Chezganov, D.S., Kholkin, A.L., Morphology and piezoelectric properties of diphenylalanine microcrystals grown from methanol-water solution (2015) Ferroelectrics, 475, pp. 127-134; Isakov, D., Matos Gomes, E.D., Bdikin, I., Almeida, B., Belsley, M., Costa, M., Rodrigues, V., Heredia, A., Production of polar β-glycine nanofibers with enhanced nonlinear optical and piezoelectric properties (2011) Cryst Growth des, 11, pp. 4288-4291; Isakov, D., Petukhova, D., Vasilev, S., Nuraeva, A., Khazamov, T., Seyedhosseini, E., Zelenovskiy, P., Kholkin, A.L., In situ observation of the humidity controlled polymorphic phase transformation in glycine microcrystals (2014) Cryst Growth des, 14, pp. 4138-4142; Iitaka, Y., The crystal structure of γ-glycine (1961) Acta Cryst, 14, pp. 1-10; Seyedhosseini, E., Kholkin, A.L., Vasileva, D., Nuraeva, A., Vasilev, S., Zelenovskiy, P., Shur, V.Y.A., (2015) Patterning and Nanoscale Characterization of Ferroelectric Amino Acid Beta-glycine, pp. 207-210. , 2015 Joint IEEE International Symposium on the Applications of Ferroelectric, Int. Symp. on Integrated Functionalities and Piezoelectric Force Microscopy Workshop (ISAF/ISIF/PFM; Kagawa, F., Horiuchi, S., Minami, N., Ishibashi, S., Kobayashi, K., Kumai, R., Murakami, Y., Tokura, Y., Polarization switching ability dependent on multidomain topology in a uniaxial organic ferroelectric (2014) Nano Lett, 14, pp. 239-243; Gao, W., Chang, L., Ma, H., You, L., Yin, J., Liu, J., Liu, Z., Yuan, G., Flexible organic ferroelectric films with a large piezoelectric response (2015) NPG Asia Mater, 7, p. e189; Irimia-Vladu, M., Troshin, P.A., Reisinger, M., Shmygleva, L., Kanbur, Y., Schwabegger, G., Bodea, M., Bauer, S., Biocompatible and biodegradable materials for organic field-effect transistors (2010) Adv Funct Mater, 20, pp. 4069-4076; Horiuchi, S., Tokura, Y., Organic ferroelectrics (2008) Nat Mater, 7, pp. 357-366; Ciofani, G., Menciassi, A., (2012) Piezoelectric Nanomaterials for Biomedical Applications, , eds. Berlin: Springer; Boldyreva, E.V., Drebushchak, V.A., Drebushchak, T.N., Paukov, I.E., Kovalevskaya, Y.A., Shutova, E.S., Polymorphism of glycine, Part i (2003) J Therm Anal Calorim, 73, pp. 409-418; Krasnov, V.P., Levit, G.L., Charushin, V.N., Grishakov, A.N., Kodess, M.I., Kalinin, V.N., Ol'Shevskaya, V.A., Chupakhin, O.N., Enantiomers of 3-Amino-1-methyl-1,2-dicarba-closo -dodecaborane (2002) Tetrahedron: Asymmetry, 13, pp. 1833-1835; Levit, G.L., Demin, A.M., Kodess, M.I., Ezhikova, M.A., Sadretdinova, L.Sh., Ol'Shevskaya, V.A., Kalinin, V.N., Charushin, V.N., Acidic hydrolysis of N -Acyl-1-substituted 3-Amino-1,2-dicarba-closo -dodecaboranes (2005) J Organomet Chem, 690, pp. 2783-2786; Sivaev, I.B., Bregadze, V.V., Polyhedral boranes for medical applications: Current status and perspectives (2009) Eur J Inorg Chem, 11, pp. 1433-1450; Issa, F., Kassiou, M., Rendina, L.M., Boron in drug discovery: Carboranes as unique pharmacophores in biologically active compounds (2011) Chem Rev, 111, pp. 5701-5722; Scholz, M., Hey-Hawkins, E., Carboranes as pharmacophores: Properties, synthesis, and application strategies (2011) Chem Rev, 111, pp. 7035-7062; Ma, L., Hamdi, J., Huang, J., Hawthorne, M.F., Camouflaged carborane amphiphiles: Synthesis and self-Assembly (2005) Inorg Chem, 44, pp. 7249-7258; Prokop, A., Vacek, J., Michl, J., Friction in carborane-based molecular rotors driven by gas flow or electric field: Classical molecular dynamics (2012) ACS Nano, 6, pp. 1901-1914; Czuprynski, K., Kaszynski, P., Homostructural two-ring mesogenes: A comparison of p -carboranes, bicycle[222]octane and benzene as structural elements (1999) Liq Cryst, 26, pp. 775-778; Januszko, A., Kaszynski, P., Wand, M.D., More, K.M., Pakhomov, S., O'Neill, M., Three-ring mesogenes containing p -carboranes: Characterization and comparison with the hydrocarbon analogs in the pure state and as additives to a ferroelectric mixture (2004) J Mater Chem, 14, pp. 1544-1553; Levit, G.L., Krasnov, V.P., Gruzdev, D.A., Demin, A.M., Bazhov, I.V., Sadretdinova, L.Sh., Olshevskaya, V.A., Charushin, V.N., Synthesis of N -[(3-Acylamino-1,2-dicarba-closo -dodecaboran-1-yl]acetyl) derivatives of α-Amino acids (2007) Collect Czech Chem Commun, 72, pp. 1697-1706; Copies of the Data Can Be Obtained, Free of Charge, on Application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, , fax: (+44) 1223 336033; or e-mail: deposit@ccdc.cam.ac.uk; Gruverman, A., Kalinin, S.V., Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics (2007) Frontiers of Ferroelectricity, pp. 107-116. , New York: Springer; Kholkin, A.L., Kalinin, S.V., Roelofs, A., Gruverman, A., Review of ferroelectric domain imaging by piezoresponse force microscopy (2006) Scanning Probe Microscopy, pp. 173-214. , In: S. Kalinin, A. Gruverman, eds. New York: Springer; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain, H., Gruverman, A., Vector piezoresponse force microscopy (2006) Microsc Microanal, 12, pp. 206-220; Soergel, E., Piezoresponse force microscopy (PFM (2011) J Phys D Appl Phys, 44, p. 464003; Nath, R., Hong, S., Klug, J.A., Imre, A., Bedzyk, M.J., Katiyar, R.S., Auciello, O., Effects of cantilever buckling on vector piezoresponse force microscopy imaging of ferroelectric domains in BiFeO 3 nanostructures (2010) Appl Phys Lett, 96, p. 163101; Koga, I., Aruga, M., Yoshinaka, Y., Theory of plane elastic waves in a piezoelectric crystalline medium and determination of elastic and piezoelectric constants of quartz (1958) Phys Rev, 109, pp. 1467-1473; Wang, Y., Yijian, J., Dielectric and piezoelectric anisotropy of lithium niobate and lithium tantalate single crystals (2009) 18th IEEE International Symposium on the Applications of Ferroelectrics (ISAF; Balke, N., Maksymovych, P., Jesse, S., Herklotz, A., Tselev, A., Eom, C.B., Kravchenko, I.I., Kalinin, S.V., Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy (2015) ACS Nano, 9, pp. 6484-6492
Correspondence Address Nuraeva, A.S.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: alla.nuraeva@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus