References |
Kitaev, Y.E., Panfilov, A.G., Smirnov, V.P., Tronc, P., Why biomolecules prefer only a few crystal structures (2003) Phys Rev e, 67, p. 011907; Lemanov, V.V., Piezo-, pyro-, and ferroelectricity in biological materials, piezoelectric materials (2000) Advances in Science, Technology and Applications, p. 1. , In: C. Galassi, M. Dinescu, K. Uchino, M. Sayer, eds. Netherlands: Springer; Lemanov, V.V., Popov, S.N., Pankova, G.A., Piezoelectric properties of crystals of some protein amino acids and their related compounds (2002) Phys Solid State, 44, pp. 1929-1935; Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., Rosenman, G., Strong piezoelectricity in bioinspired peptide nanotubes (2010) ACS Nano, 4, pp. 610-614; Zelenovskiy, P.S., Shur, V.Y.A., Nuraeva, A.S., Vasilev, S.G., Vasileva, D.S., Alikin, D.O., Chezganov, D.S., Kholkin, A.L., Morphology and piezoelectric properties of diphenylalanine microcrystals grown from methanol-water solution (2015) Ferroelectrics, 475, pp. 127-134; Isakov, D., Matos Gomes, E.D., Bdikin, I., Almeida, B., Belsley, M., Costa, M., Rodrigues, V., Heredia, A., Production of polar β-glycine nanofibers with enhanced nonlinear optical and piezoelectric properties (2011) Cryst Growth des, 11, pp. 4288-4291; Isakov, D., Petukhova, D., Vasilev, S., Nuraeva, A., Khazamov, T., Seyedhosseini, E., Zelenovskiy, P., Kholkin, A.L., In situ observation of the humidity controlled polymorphic phase transformation in glycine microcrystals (2014) Cryst Growth des, 14, pp. 4138-4142; Iitaka, Y., The crystal structure of γ-glycine (1961) Acta Cryst, 14, pp. 1-10; Seyedhosseini, E., Kholkin, A.L., Vasileva, D., Nuraeva, A., Vasilev, S., Zelenovskiy, P., Shur, V.Y.A., (2015) Patterning and Nanoscale Characterization of Ferroelectric Amino Acid Beta-glycine, pp. 207-210. , 2015 Joint IEEE International Symposium on the Applications of Ferroelectric, Int. Symp. on Integrated Functionalities and Piezoelectric Force Microscopy Workshop (ISAF/ISIF/PFM; Kagawa, F., Horiuchi, S., Minami, N., Ishibashi, S., Kobayashi, K., Kumai, R., Murakami, Y., Tokura, Y., Polarization switching ability dependent on multidomain topology in a uniaxial organic ferroelectric (2014) Nano Lett, 14, pp. 239-243; Gao, W., Chang, L., Ma, H., You, L., Yin, J., Liu, J., Liu, Z., Yuan, G., Flexible organic ferroelectric films with a large piezoelectric response (2015) NPG Asia Mater, 7, p. e189; Irimia-Vladu, M., Troshin, P.A., Reisinger, M., Shmygleva, L., Kanbur, Y., Schwabegger, G., Bodea, M., Bauer, S., Biocompatible and biodegradable materials for organic field-effect transistors (2010) Adv Funct Mater, 20, pp. 4069-4076; Horiuchi, S., Tokura, Y., Organic ferroelectrics (2008) Nat Mater, 7, pp. 357-366; Ciofani, G., Menciassi, A., (2012) Piezoelectric Nanomaterials for Biomedical Applications, , eds. Berlin: Springer; Boldyreva, E.V., Drebushchak, V.A., Drebushchak, T.N., Paukov, I.E., Kovalevskaya, Y.A., Shutova, E.S., Polymorphism of glycine, Part i (2003) J Therm Anal Calorim, 73, pp. 409-418; Krasnov, V.P., Levit, G.L., Charushin, V.N., Grishakov, A.N., Kodess, M.I., Kalinin, V.N., Ol'Shevskaya, V.A., Chupakhin, O.N., Enantiomers of 3-Amino-1-methyl-1,2-dicarba-closo -dodecaborane (2002) Tetrahedron: Asymmetry, 13, pp. 1833-1835; Levit, G.L., Demin, A.M., Kodess, M.I., Ezhikova, M.A., Sadretdinova, L.Sh., Ol'Shevskaya, V.A., Kalinin, V.N., Charushin, V.N., Acidic hydrolysis of N -Acyl-1-substituted 3-Amino-1,2-dicarba-closo -dodecaboranes (2005) J Organomet Chem, 690, pp. 2783-2786; Sivaev, I.B., Bregadze, V.V., Polyhedral boranes for medical applications: Current status and perspectives (2009) Eur J Inorg Chem, 11, pp. 1433-1450; Issa, F., Kassiou, M., Rendina, L.M., Boron in drug discovery: Carboranes as unique pharmacophores in biologically active compounds (2011) Chem Rev, 111, pp. 5701-5722; Scholz, M., Hey-Hawkins, E., Carboranes as pharmacophores: Properties, synthesis, and application strategies (2011) Chem Rev, 111, pp. 7035-7062; Ma, L., Hamdi, J., Huang, J., Hawthorne, M.F., Camouflaged carborane amphiphiles: Synthesis and self-Assembly (2005) Inorg Chem, 44, pp. 7249-7258; Prokop, A., Vacek, J., Michl, J., Friction in carborane-based molecular rotors driven by gas flow or electric field: Classical molecular dynamics (2012) ACS Nano, 6, pp. 1901-1914; Czuprynski, K., Kaszynski, P., Homostructural two-ring mesogenes: A comparison of p -carboranes, bicycle[222]octane and benzene as structural elements (1999) Liq Cryst, 26, pp. 775-778; Januszko, A., Kaszynski, P., Wand, M.D., More, K.M., Pakhomov, S., O'Neill, M., Three-ring mesogenes containing p -carboranes: Characterization and comparison with the hydrocarbon analogs in the pure state and as additives to a ferroelectric mixture (2004) J Mater Chem, 14, pp. 1544-1553; Levit, G.L., Krasnov, V.P., Gruzdev, D.A., Demin, A.M., Bazhov, I.V., Sadretdinova, L.Sh., Olshevskaya, V.A., Charushin, V.N., Synthesis of N -[(3-Acylamino-1,2-dicarba-closo -dodecaboran-1-yl]acetyl) derivatives of α-Amino acids (2007) Collect Czech Chem Commun, 72, pp. 1697-1706; Copies of the Data Can Be Obtained, Free of Charge, on Application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, , fax: (+44) 1223 336033; or e-mail: deposit@ccdc.cam.ac.uk; Gruverman, A., Kalinin, S.V., Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics (2007) Frontiers of Ferroelectricity, pp. 107-116. , New York: Springer; Kholkin, A.L., Kalinin, S.V., Roelofs, A., Gruverman, A., Review of ferroelectric domain imaging by piezoresponse force microscopy (2006) Scanning Probe Microscopy, pp. 173-214. , In: S. Kalinin, A. Gruverman, eds. New York: Springer; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain, H., Gruverman, A., Vector piezoresponse force microscopy (2006) Microsc Microanal, 12, pp. 206-220; Soergel, E., Piezoresponse force microscopy (PFM (2011) J Phys D Appl Phys, 44, p. 464003; Nath, R., Hong, S., Klug, J.A., Imre, A., Bedzyk, M.J., Katiyar, R.S., Auciello, O., Effects of cantilever buckling on vector piezoresponse force microscopy imaging of ferroelectric domains in BiFeO 3 nanostructures (2010) Appl Phys Lett, 96, p. 163101; Koga, I., Aruga, M., Yoshinaka, Y., Theory of plane elastic waves in a piezoelectric crystalline medium and determination of elastic and piezoelectric constants of quartz (1958) Phys Rev, 109, pp. 1467-1473; Wang, Y., Yijian, J., Dielectric and piezoelectric anisotropy of lithium niobate and lithium tantalate single crystals (2009) 18th IEEE International Symposium on the Applications of Ferroelectrics (ISAF; Balke, N., Maksymovych, P., Jesse, S., Herklotz, A., Tselev, A., Eom, C.B., Kravchenko, I.I., Kalinin, S.V., Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy (2015) ACS Nano, 9, pp. 6484-6492 |