Formation of the nanodomain structures after pulse laser heating in lithium tantalate: Experiment and computer simulation / Kosobokov M.S., Shur V.Y., Mingaliev E.A., Karpov V.R., Kuznetsov D.K. // Ferroelectrics. - 2016. - V. 496, l. 1. - P. 120-127.

ISSN:
00150193
Type:
Conference Paper
Abstract:
Formation of the micro- and nanodomain structures in congruent lithium tantalate single crystal under the action of pyroelectric field induced by pulse infrared laser irradiation at elevated temperatures was investigated. Three types of the self-organized domain structures were obtained: (1) the self-similar domain structure formed in crystal regions heated below Curie temperature, (2) the maze-type domain structure, and (3) irregular-shaped isolated domains formed in the regions heated above Curie temperature. The results of calculation of the time dependent spatial distribution of the temperature and pyroelectric field have been used for explanation of the peculiarities of domain structure formation. © 2016 Taylor & Francis Group, LLC.
Author keywords:
bulk conductivity; domain engineering; Lithium tantalate; nanodomains; pyroelectric field
Index keywords:
Curie temperature; Lithium; Single crystals; Bulk conductivities; Domain engineering; Lithium tantalate; Nano domain; Pyroelectric fields; Crystal structure
DOI:
10.1080/00150193.2016.1155033
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964527130&doi=10.1080%2f00150193.2016.1155033&partnerID=40&md5=331be54f24e3ceb7ba1a6eceb12763a5
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964527130&doi=10.1080%2f00150193.2016.1155033&partnerID=40&md5=331be54f24e3ceb7ba1a6eceb12763a5
Affiliations Institute of the Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords bulk conductivity; domain engineering; Lithium tantalate; nanodomains; pyroelectric field
References Denton, R.T., Lithium tantalate light modulators (1967) J Appl Phys, 38, pp. 1611-1617; Glass, A., Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO 3 (1968) Phys Rev, 172, pp. 564-571; Shur, V.Y.A., Lithium niobate and lithium tantalate-based piezoelectric materials (2010) Advanced Piezoelectric Materials: Science and Technology, pp. 204-238. , In: K. Uchino, ed. Woodhead Publishing, Cambridge; Shur, V.Y.A., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics, 340, pp. 3-16; Shur, V.Y.A., Nikolaeva, E.V., Shishkin, E.I., Kozhevnikov, V.L., Chernykh, A.P., Terabe, K., Kitamura, K., Polarization reversal in congruent and stoichiometric lithium tantalate (2001) Appl Phys Lett, 79, pp. 3146-3148; Shur, V.Y.A., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics, 257, pp. 191-202; Armstrong, J., Bloembergen, N., Ducuing, J., Pershan, P., Interactions between light waves in a nonlinear dielectric (1962) Phys Rev, 127, pp. 1918-1939; Matsumoto, S., Lim, E.J., Hertz, H.M., Fejer, M.M., Quasiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides (1991) Electron Lett, 27, pp. 2040-2041; Hum, D.S., Fejer, M.M., Quasi-phasematching (2007) Comptes Rendus Phys, 8, pp. 180-198; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Micro-And nano-domain engineering in lithium niobate (2015) Appl Phys Rev, 2, p. 040604; Shur, V.Y.A., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, pp. 97-106; Shur, V.Y.A., Mingaliev, E.A., Kuznetsov, D.K., Kosobokov, M.S., Micro-And nanodomain structures produced by pulse laser heating in congruent lithium tantalate (2013) Ferroelectrics, 443, pp. 95-102; Kosobokov, M.S., Shur, V.Y.A., Mingaliev, E.A., Avdoshin, S.V., Kuznetsov, D.K., Self-organized nanodomain structures arising in lithium tantalate and lithium niobate after pulse heating by infrared laser (2015) Ferroelectrics, 476, pp. 134-145; Shur, V.Y.A., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., In situ investigation of formation of self-Assembled nanodomain structure in lithium niobate after pulse laser irradiation (2011) Appl Phys Lett, 99, p. 082901; Russ, J.C., (1994) Fractal Surfaces, , Plenum Press, New York; Zhdanova, V.V., Klyuev, V.P., Lemanov, V., Smirnov, I.A., Tikhonov, V.V., Thermal properties of lithium niobate crystals (1968) Sov Phys Sol Stat, 10, pp. 1360-1362; Wong, K.K., Properties of lithium niobate (2002) Herts: INSPEC; Morgan, R.A., Kang, K.I., Hsu, C.C., Koliopoulos, C.L., Peyghambarian, N., Measurement of the thermal diffusivity of nonlinear anisotropic crystals using optical interferometry (1987) Appl Opt, 26, pp. 5266-5271; Shur, V.Y.A., Kosobokov, M.S., Mingaliev, E.A., Karpov, V.R., Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating (2015) AIP Advances, 5, p. 107110; Huanosta, A., West, A.R., The electrical properties of ferroelectric LiTaO 3 and its solid solutions (1987) J Appl Phys, 61, pp. 5386-5391; Ishizuki, H., Shoji, I., Taira, T., Periodical poling characteristics of congruent MgO:LiNbO 3 crystals at elevated temperature (2003) Appl Phys Lett, 82, pp. 4062-4064
Correspondence Address Kosobokov, M.S.; Institute of the Natural Sciences, Ural Federal UniversityRussian Federation; email: mihail.kosobokov@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus