References |
Denton, R.T., Lithium tantalate light modulators (1967) J Appl Phys, 38, pp. 1611-1617; Glass, A., Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO 3 (1968) Phys Rev, 172, pp. 564-571; Shur, V.Y.A., Lithium niobate and lithium tantalate-based piezoelectric materials (2010) Advanced Piezoelectric Materials: Science and Technology, pp. 204-238. , In: K. Uchino, ed. Woodhead Publishing, Cambridge; Shur, V.Y.A., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics, 340, pp. 3-16; Shur, V.Y.A., Nikolaeva, E.V., Shishkin, E.I., Kozhevnikov, V.L., Chernykh, A.P., Terabe, K., Kitamura, K., Polarization reversal in congruent and stoichiometric lithium tantalate (2001) Appl Phys Lett, 79, pp. 3146-3148; Shur, V.Y.A., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics, 257, pp. 191-202; Armstrong, J., Bloembergen, N., Ducuing, J., Pershan, P., Interactions between light waves in a nonlinear dielectric (1962) Phys Rev, 127, pp. 1918-1939; Matsumoto, S., Lim, E.J., Hertz, H.M., Fejer, M.M., Quasiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides (1991) Electron Lett, 27, pp. 2040-2041; Hum, D.S., Fejer, M.M., Quasi-phasematching (2007) Comptes Rendus Phys, 8, pp. 180-198; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Micro-And nano-domain engineering in lithium niobate (2015) Appl Phys Rev, 2, p. 040604; Shur, V.Y.A., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, pp. 97-106; Shur, V.Y.A., Mingaliev, E.A., Kuznetsov, D.K., Kosobokov, M.S., Micro-And nanodomain structures produced by pulse laser heating in congruent lithium tantalate (2013) Ferroelectrics, 443, pp. 95-102; Kosobokov, M.S., Shur, V.Y.A., Mingaliev, E.A., Avdoshin, S.V., Kuznetsov, D.K., Self-organized nanodomain structures arising in lithium tantalate and lithium niobate after pulse heating by infrared laser (2015) Ferroelectrics, 476, pp. 134-145; Shur, V.Y.A., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., In situ investigation of formation of self-Assembled nanodomain structure in lithium niobate after pulse laser irradiation (2011) Appl Phys Lett, 99, p. 082901; Russ, J.C., (1994) Fractal Surfaces, , Plenum Press, New York; Zhdanova, V.V., Klyuev, V.P., Lemanov, V., Smirnov, I.A., Tikhonov, V.V., Thermal properties of lithium niobate crystals (1968) Sov Phys Sol Stat, 10, pp. 1360-1362; Wong, K.K., Properties of lithium niobate (2002) Herts: INSPEC; Morgan, R.A., Kang, K.I., Hsu, C.C., Koliopoulos, C.L., Peyghambarian, N., Measurement of the thermal diffusivity of nonlinear anisotropic crystals using optical interferometry (1987) Appl Opt, 26, pp. 5266-5271; Shur, V.Y.A., Kosobokov, M.S., Mingaliev, E.A., Karpov, V.R., Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating (2015) AIP Advances, 5, p. 107110; Huanosta, A., West, A.R., The electrical properties of ferroelectric LiTaO 3 and its solid solutions (1987) J Appl Phys, 61, pp. 5386-5391; Ishizuki, H., Shoji, I., Taira, T., Periodical poling characteristics of congruent MgO:LiNbO 3 crystals at elevated temperature (2003) Appl Phys Lett, 82, pp. 4062-4064 |