Glycine nanostructures and domains in beta-glycine: Computational modeling and PFM observations / Bystrov V.S., Seyedhosseini E., Bdikin I.K., Kopyl S., Kholkin A.L., Vasilev S.G., Zelenovskiy P.S., Vasileva D.S., Shur V.Y. // Ferroelectrics. - 2016. - V. 496, l. 1. - P. 28-45.

ISSN:
00150193
Type:
Conference Paper
Abstract:
In this work computational molecular modeling of β-glycine nanostructures is presented, using various approaches, mostly semi-empirical quantum approximation PM3 type in HyperChem software in restricted Hartree-Fock calculations. The main aims of present studies focus on the molecular modeling for the β-glycine domains and domain walls formation and interaction. Obtained results are presented in visual 3D-models of the glycine domains and domain walls, compared with experimentally observed by PFM domain walls structures. Modeling is arranged with calculated values of physical data (polarization, etc.). Analysis of these new computed and corroborated PFM experimental data for β-glycine domains are presented. © 2016 Taylor & Francis Group, LLC.
Author keywords:
domain walls; Ferroelectrics; glycine; molecular modeling; nanocrystals; piezoelectrics
Index keywords:
Domain walls; Ferroelectric materials; Hartree approximation; Molecular modeling; Nanocrystals; Nanostructures; 3D models; Calculated values; Computational model; Computational molecular modeling; Phy
DOI:
10.1080/00150193.2016.1157435
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964461184&doi=10.1080%2f00150193.2016.1157435&partnerID=40&md5=22556eb2e75b46babe0bdb6f4106ca2b
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964461184&doi=10.1080%2f00150193.2016.1157435&partnerID=40&md5=22556eb2e75b46babe0bdb6f4106ca2b
Affiliations Institute of Mathematical Problems of Biology RAS, Pushchino, Russian Federation; Department of Materials Engineering, CICECO, University of Aveiro, Aveiro, Portugal; Department of Mechanical Engineering, Center for Mechanical Technology and Automation, University of Aveiro, Aveiro, Portugal; Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords domain walls; Ferroelectrics; glycine; molecular modeling; nanocrystals; piezoelectrics
References Bystrov, V.S., Paramonova, E., Bdikin, I., Kopyl, S., Heredia, A., Pullar, R.C., Kholkin, A.L., Bioferroelectricity: Diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale (2012) Ferroelectrics, 440, pp. 3-24; Leuchtag, H.R., Bystrov, V.S., Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: Bioferroelectricity and superionic conduction (1999) Ferroelectrics, 220, pp. 157-204; Amdursky, N., Beker, P., Schklovsky, J., Gazit, E., Rosenman, G., Ferroelectric and related phenomena in biological and bioinspired nanostructures (2010) Ferroelectrics, 399, pp. 107-117; Tuszynski, J.A., Craddock, T.J.A., Carpenter, E.J., Bio-ferroelectricity at the nanoscale (2008) J Comp Theor Nanoscience, 5, pp. 2022-2032; Bystrov, V.S., Bdikin, I., Heredia, A., Pullar, R.C., Mishina, E., Sigov, A., Kholkin, A.L., Piezoelectric nanomaterials for biomedical applications (2012) Piezoelectricity and Ferroelectricity in Biomaterials: From Proteins to Self-Assembled Peptide Nanotubes, pp. 187-211. , In: G. Ciofani, A. Menciassi, eds. Berlin, Heidelberg: Springer-Verlag; Lang, S.B., Piezoelectricity, pyroelectricity and ferroelectricity in biomaterials-speculation on their biological significance (2000) IEEE Trans Dielectr Electr Insul, 7, pp. 466-473; Bystrov, V.S., Seyedhosseini, E., Bdikin, I., Kopyl, S., Neumayer, S.M., Coutinho, J., Kholkin, A.L., Bioferroelectricity in nanostructured glycine and thymine: Molecular modeling and ferroelectric properties at the nanoscale (2015) Ferroelectrics, 475, pp. 107-126; Lines, M.E., Glass, A.M., (1977) Principles and Applications of Ferroelectrics and Related Materials, , Oxford: Clarendon Press; Smolenskii, G.A., Bokon, V.A., Isupov, V.A., (1985) Physics of Ferroelectric Phenomena: Ferroelectrics and Related Materials, , eds: New York: Gordon and Breach; (in Russian: Leningrad: Nauka; 1985; Goodby, J.W., Blinc, R., Clark, N.A., Lagerwall, S.T., Osipov, M.A., Pikin, S.A., Sakurai, T., Zeks, B., (1991) Ferroelectric Liquid Crystals: Principles, Properties and Applications, , eds: Philadelphia: Gordon and Breach; Horiuchi, S., Kumai, R., Tokura, Y., Hydrogen bonding molecular chains for high-Temperature ferroelectricity (2011) Adv Mater, 23, p. 2098; Kagawa, F., Horiuchi, S., Minami, N., Ishibashi, S., Kobayashi, K., Kumai, R., Murakami, Y., Tokura, Y., Polarization switching ability dependent on multidomain topology in a uniaxial organic ferroelectric (2014) NANO Letters, 14, pp. 239-243; Bystrov, V.S., Bystrova, N.K., Bioferroelectricity and optical properties of biological systems (2002) Advanced Organic and Inorganic Optical Materials, Proc SPIE 5122, pp. 132-136; Bystrov, V.S., Seyedhosseini, E., Kopyl, S., Bdikin, I.K., Kholkin, A.L., Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements (2014) J Appl Phys, 116, p. 066803; Lemanov, V.V., Popov, S.N., Pankova, G.A., Protein amino acid crystals: Structure, symmetry, physical properties (2003) Ferroelectrics, 285, pp. 581-590; Perlovich, G.L., Hansen, L.K., Bauer-Brandl A: The polymorphism of glycine: Thermodynamical and structural aspects (2001) J Therm Anal Calorim, 66, pp. 699-715; Boldyreva, E.V., Drebushchak, V.A., Drebushchak, T.N., Paukov, I.E., Kovalevskava, Y.A., Shutova, E.S., Poylmorphism of glycine: Thermodynamic aspects Part I Relative stability of the polymorphs (2003) J Therm Anal Calorim, 73, pp. 409-418; Dawson, A., Allan, D.R., Belmonte, S.A., Clark, S.J., David, W.I.F., McGregor, P.A., Parsons, S., Sawyer, L., Effect of high pressure on the crystal structures of polymorphs of glycine (2005) Cryst Growth des, 5, pp. 1415-1427; Marsh, R.E., Refinement of the crystal structure of glycine (1958) Acta Crystallogr, 11, pp. 654-663; Iitaka, Y., The crystal structure of γ-glycine (1961) Acta Crystallogr, 14, pp. 1-10; Iitaka, Y., The crystal structure of β-glycine (1960) Acta Crystallogr, 13, pp. 35-45; Latajka, Z., Ratalczak, H., Molecular orbital calculations for glycine crystals (1979) J Phys Chem, 83, pp. 2785-2787; Seyedhosseini, E., Ivanov, M., Bystrov, V., Bdikin, I., Zelenovskiy, P., VYa, S., Kudryavtsev, A., Kholkin, A.L., Growth and nonlinear optical properties of beta-glycine crystals grown on Pt substrates (2014) Cryst Growth des, 14, pp. 2831-2837; Bdikin, I., Seyedhosseini, E., Singh, B., Heredia, A., Bystrov, V., Gracio, J., Kholkin, A.L., Piezoelectricity in microcrystals of amino acids via piezoresponse force microscopy Proceedings of 6th International Conference Contemporary Achievements of Bionanoscopy, p. 11. , 18-20 June 2012, Moscow State University, Moscow, Russia; Heredia, A., Meunier, V., Bdikin, I.K., Gracio, J., Balke, N., Jesse, S., Tselev, A., Kholkin, A.L., Nanoscale ferroelectricity in crystalline γ-glycine (2012) Adv Funct Mater, 22, pp. 2996-3003; Seyedhosseini, E., Bdikin, I., Heredia, A., Bystrov, V., Meunier, V., Gracio, J., Balke, N., Kalinin, S.V., (2012) Nanoscale Ferroelectricity in Crystalline γ-glycine, p. 201. , In: Abstract Book of Joint ISAF/ECAPD/PFM 2012 Conference, (July 9-13, University of Aveiro, Aveiro, Portugal; Seyedhosseini, E., (2015) Piezoelectricity and Ferroelectricity in Amino Acid Glycine, p. 125. , PhD Thesis. Portugal: University of Aveiro; pages; (2002) Tools for Molecular Modeling; HyperChem 8.0, Professional Edition, , HyperChem 7.5, Gainesville: Hypercube. Inc. 2010; Bystrov, V.S., Computational modeling and nanoscale characterization (2013) Bioferroelectricity: Peptide Nanotubes, , Saarbruecken: Lambert Academic Publishing; (in Russian). (in English: in print 2015; Bystrov, V.S., Molecular modeling and molecular dynamic simulation of polarization switching phenomena in the ferroelectric polymers PVDF at the nanoscale (2014) Physica B, 432, pp. 21-25; Bystrov, V.S., Paramonova, E.V., Bdikin, I.K., Bystrova, A.V., Pullar, R.C., Kholkin, A.L., Molecular modelling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF (2013) J Mol Model, 19, pp. 3591-3602; (2014) AIMPRO Home Page, , http://aimpro.ncl.ac.uk/, accessed May 12; Tagantsev, A.K., Cross, L.E., Fousek, J., (2010) Domains in Ferroic Crystals and Thin Films, , New York: Springer-Verlag; Pertsev, N.A., Gainutdinov, R.V., YaV, B., Volk, T.R., Blockage of domain growth by nanoscale heterogeneities in a relaxor ferroelectric Sr 0.61 Ba 0.39Nb 2O 6 (2015) J Appl Phys, 117, p. 034101; Paruch, P., Tybell, T., Triscone, J.M., Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr 0.2Ti 0.8)O 3 thin films (2001) Appl Phys Lett, 79, pp. 530-532; Pertsev, N.A., Petraru, A., Kohlstedt, H., Waser, R., Bdikin, I.K., Kiselev, D., Kholkin, A.L., Dynamics of ferroelectric nanodomains in BaTiO 3 epitaxial thin films via piezoresponse force microscopy (2008) Nanotechnology, 19, p. 375703; Pertsev, N.A., Kholkin, A.L., Subsurface nanodomains with in-plane polarization in uniaxial ferroelectrics via scanning force microscopy (2013) Phys Rev B, 88, p. 174109; Ievlev, A.V., Alikin, D.O., Morozovska, A.N., Varenyuk, O.V., Eliseev, E.A., Kholkin, A.L., VYa, S., Kalinin, S.V., Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals (2015) ACS Nano, 9, pp. 769-777; VYa, S., Akhmathanov, A.R., Chuvakova, M.A., Baturin, I.S., Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate (2014) Appl Phys Lett, 105, p. 152905; Kobayashi, K., Horiuchi, S., Kumai, R., Kagawa, F., Murakami, Y., Tokura, Y., Electronic ferroelectricity in a molecular crystal with large polarization directing antiparallel to ionic displacement (2012) Phys Rev Lett, 108, p. 237601; Horiuchi, S., Tokura, Y., Organic ferroelectrics (2008) Nat Mater, 7, pp. 357-366; Horiuchi, S., Kagawa, F., Hatahara, K., Kobayashi, K., Kumai, R., Murakami, Y., Tokura, Y., Above-room-Temperature ferroelectricity and antiferroelectricity in benzimidazoles (2012) Nat Commun, 3, p. 2322; Molotskii, M., Agronin, A., Urenski, P., Shvebelman, M., Rosenman, G., Rosenwaks, Y., Ferroelectric domain breakdown (2003) Phys Rev Lett, 90, p. 107601; Vasilev, S.G., Petukhova, D.S., Dikushina, E.A., Nuraeva, A.S., Zelenovskiy, P., Khazamov, T.A., Isakov, D., Kholkin, A.L., Investigation of the polymorphic phase transition in a single crystal of glycine (2014) Abstract Book of the International Conference Piezoresponce Force Microscopy and Nanoscale Phenomena in Polar Materials, p. 141. , In: July 14-17, Ural Federal University, Ekaterinburg, Russia; Petukhova, D.S., Vasilev, S.G., Nuraeva, A.S., Zelenovskiy, P.S., Seyedhosseini, E., Isakov, D., VYa, S., Kholkin, A.L., Peculiarities of domain structure of β-glycine single crystals (2014) Abstract Book of the International Conference Piezoresponce Force Microscopy and Nanoscale Phenomena in Polar Materials, p. 142. , In: (July 14-17, Ural Federal University, Ekaterinburg, Russia; Khazamov, T.A., Petukhova, D.S., Vasilev, S.G., Nuraeva, A.S., Zelenovskiy, P.S., Seyedhosseini, E., VYa, S., Kholkin, A.L., Domain and crystal structure of glycine nanocrystals (2014) Abstract Book of the International Conference Piezoresponce Force Microscopy and Nanoscale Phenomena in Polar Materials, p. 144. , In: (July 14-17, Ural Federal University, Ekaterinburg, Russia
Correspondence Address Bystrov, V.S.; Institute of Mathematical Problems of Biology RASRussian Federation; email: vsbys@mail.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus