References |
Bystrov, V.S., Paramonova, E., Bdikin, I., Kopyl, S., Heredia, A., Pullar, R.C., Kholkin, A.L., Bioferroelectricity: Diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale (2012) Ferroelectrics, 440, pp. 3-24; Leuchtag, H.R., Bystrov, V.S., Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: Bioferroelectricity and superionic conduction (1999) Ferroelectrics, 220, pp. 157-204; Amdursky, N., Beker, P., Schklovsky, J., Gazit, E., Rosenman, G., Ferroelectric and related phenomena in biological and bioinspired nanostructures (2010) Ferroelectrics, 399, pp. 107-117; Tuszynski, J.A., Craddock, T.J.A., Carpenter, E.J., Bio-ferroelectricity at the nanoscale (2008) J Comp Theor Nanoscience, 5, pp. 2022-2032; Bystrov, V.S., Bdikin, I., Heredia, A., Pullar, R.C., Mishina, E., Sigov, A., Kholkin, A.L., Piezoelectric nanomaterials for biomedical applications (2012) Piezoelectricity and Ferroelectricity in Biomaterials: From Proteins to Self-Assembled Peptide Nanotubes, pp. 187-211. , In: G. Ciofani, A. Menciassi, eds. Berlin, Heidelberg: Springer-Verlag; Lang, S.B., Piezoelectricity, pyroelectricity and ferroelectricity in biomaterials-speculation on their biological significance (2000) IEEE Trans Dielectr Electr Insul, 7, pp. 466-473; Bystrov, V.S., Seyedhosseini, E., Bdikin, I., Kopyl, S., Neumayer, S.M., Coutinho, J., Kholkin, A.L., Bioferroelectricity in nanostructured glycine and thymine: Molecular modeling and ferroelectric properties at the nanoscale (2015) Ferroelectrics, 475, pp. 107-126; Lines, M.E., Glass, A.M., (1977) Principles and Applications of Ferroelectrics and Related Materials, , Oxford: Clarendon Press; Smolenskii, G.A., Bokon, V.A., Isupov, V.A., (1985) Physics of Ferroelectric Phenomena: Ferroelectrics and Related Materials, , eds: New York: Gordon and Breach; (in Russian: Leningrad: Nauka; 1985; Goodby, J.W., Blinc, R., Clark, N.A., Lagerwall, S.T., Osipov, M.A., Pikin, S.A., Sakurai, T., Zeks, B., (1991) Ferroelectric Liquid Crystals: Principles, Properties and Applications, , eds: Philadelphia: Gordon and Breach; Horiuchi, S., Kumai, R., Tokura, Y., Hydrogen bonding molecular chains for high-Temperature ferroelectricity (2011) Adv Mater, 23, p. 2098; Kagawa, F., Horiuchi, S., Minami, N., Ishibashi, S., Kobayashi, K., Kumai, R., Murakami, Y., Tokura, Y., Polarization switching ability dependent on multidomain topology in a uniaxial organic ferroelectric (2014) NANO Letters, 14, pp. 239-243; Bystrov, V.S., Bystrova, N.K., Bioferroelectricity and optical properties of biological systems (2002) Advanced Organic and Inorganic Optical Materials, Proc SPIE 5122, pp. 132-136; Bystrov, V.S., Seyedhosseini, E., Kopyl, S., Bdikin, I.K., Kholkin, A.L., Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements (2014) J Appl Phys, 116, p. 066803; Lemanov, V.V., Popov, S.N., Pankova, G.A., Protein amino acid crystals: Structure, symmetry, physical properties (2003) Ferroelectrics, 285, pp. 581-590; Perlovich, G.L., Hansen, L.K., Bauer-Brandl A: The polymorphism of glycine: Thermodynamical and structural aspects (2001) J Therm Anal Calorim, 66, pp. 699-715; Boldyreva, E.V., Drebushchak, V.A., Drebushchak, T.N., Paukov, I.E., Kovalevskava, Y.A., Shutova, E.S., Poylmorphism of glycine: Thermodynamic aspects Part I Relative stability of the polymorphs (2003) J Therm Anal Calorim, 73, pp. 409-418; Dawson, A., Allan, D.R., Belmonte, S.A., Clark, S.J., David, W.I.F., McGregor, P.A., Parsons, S., Sawyer, L., Effect of high pressure on the crystal structures of polymorphs of glycine (2005) Cryst Growth des, 5, pp. 1415-1427; Marsh, R.E., Refinement of the crystal structure of glycine (1958) Acta Crystallogr, 11, pp. 654-663; Iitaka, Y., The crystal structure of γ-glycine (1961) Acta Crystallogr, 14, pp. 1-10; Iitaka, Y., The crystal structure of β-glycine (1960) Acta Crystallogr, 13, pp. 35-45; Latajka, Z., Ratalczak, H., Molecular orbital calculations for glycine crystals (1979) J Phys Chem, 83, pp. 2785-2787; Seyedhosseini, E., Ivanov, M., Bystrov, V., Bdikin, I., Zelenovskiy, P., VYa, S., Kudryavtsev, A., Kholkin, A.L., Growth and nonlinear optical properties of beta-glycine crystals grown on Pt substrates (2014) Cryst Growth des, 14, pp. 2831-2837; Bdikin, I., Seyedhosseini, E., Singh, B., Heredia, A., Bystrov, V., Gracio, J., Kholkin, A.L., Piezoelectricity in microcrystals of amino acids via piezoresponse force microscopy Proceedings of 6th International Conference Contemporary Achievements of Bionanoscopy, p. 11. , 18-20 June 2012, Moscow State University, Moscow, Russia; Heredia, A., Meunier, V., Bdikin, I.K., Gracio, J., Balke, N., Jesse, S., Tselev, A., Kholkin, A.L., Nanoscale ferroelectricity in crystalline γ-glycine (2012) Adv Funct Mater, 22, pp. 2996-3003; Seyedhosseini, E., Bdikin, I., Heredia, A., Bystrov, V., Meunier, V., Gracio, J., Balke, N., Kalinin, S.V., (2012) Nanoscale Ferroelectricity in Crystalline γ-glycine, p. 201. , In: Abstract Book of Joint ISAF/ECAPD/PFM 2012 Conference, (July 9-13, University of Aveiro, Aveiro, Portugal; Seyedhosseini, E., (2015) Piezoelectricity and Ferroelectricity in Amino Acid Glycine, p. 125. , PhD Thesis. Portugal: University of Aveiro; pages; (2002) Tools for Molecular Modeling; HyperChem 8.0, Professional Edition, , HyperChem 7.5, Gainesville: Hypercube. Inc. 2010; Bystrov, V.S., Computational modeling and nanoscale characterization (2013) Bioferroelectricity: Peptide Nanotubes, , Saarbruecken: Lambert Academic Publishing; (in Russian). (in English: in print 2015; Bystrov, V.S., Molecular modeling and molecular dynamic simulation of polarization switching phenomena in the ferroelectric polymers PVDF at the nanoscale (2014) Physica B, 432, pp. 21-25; Bystrov, V.S., Paramonova, E.V., Bdikin, I.K., Bystrova, A.V., Pullar, R.C., Kholkin, A.L., Molecular modelling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF (2013) J Mol Model, 19, pp. 3591-3602; (2014) AIMPRO Home Page, , http://aimpro.ncl.ac.uk/, accessed May 12; Tagantsev, A.K., Cross, L.E., Fousek, J., (2010) Domains in Ferroic Crystals and Thin Films, , New York: Springer-Verlag; Pertsev, N.A., Gainutdinov, R.V., YaV, B., Volk, T.R., Blockage of domain growth by nanoscale heterogeneities in a relaxor ferroelectric Sr 0.61 Ba 0.39Nb 2O 6 (2015) J Appl Phys, 117, p. 034101; Paruch, P., Tybell, T., Triscone, J.M., Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr 0.2Ti 0.8)O 3 thin films (2001) Appl Phys Lett, 79, pp. 530-532; Pertsev, N.A., Petraru, A., Kohlstedt, H., Waser, R., Bdikin, I.K., Kiselev, D., Kholkin, A.L., Dynamics of ferroelectric nanodomains in BaTiO 3 epitaxial thin films via piezoresponse force microscopy (2008) Nanotechnology, 19, p. 375703; Pertsev, N.A., Kholkin, A.L., Subsurface nanodomains with in-plane polarization in uniaxial ferroelectrics via scanning force microscopy (2013) Phys Rev B, 88, p. 174109; Ievlev, A.V., Alikin, D.O., Morozovska, A.N., Varenyuk, O.V., Eliseev, E.A., Kholkin, A.L., VYa, S., Kalinin, S.V., Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals (2015) ACS Nano, 9, pp. 769-777; VYa, S., Akhmathanov, A.R., Chuvakova, M.A., Baturin, I.S., Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate (2014) Appl Phys Lett, 105, p. 152905; Kobayashi, K., Horiuchi, S., Kumai, R., Kagawa, F., Murakami, Y., Tokura, Y., Electronic ferroelectricity in a molecular crystal with large polarization directing antiparallel to ionic displacement (2012) Phys Rev Lett, 108, p. 237601; Horiuchi, S., Tokura, Y., Organic ferroelectrics (2008) Nat Mater, 7, pp. 357-366; Horiuchi, S., Kagawa, F., Hatahara, K., Kobayashi, K., Kumai, R., Murakami, Y., Tokura, Y., Above-room-Temperature ferroelectricity and antiferroelectricity in benzimidazoles (2012) Nat Commun, 3, p. 2322; Molotskii, M., Agronin, A., Urenski, P., Shvebelman, M., Rosenman, G., Rosenwaks, Y., Ferroelectric domain breakdown (2003) Phys Rev Lett, 90, p. 107601; Vasilev, S.G., Petukhova, D.S., Dikushina, E.A., Nuraeva, A.S., Zelenovskiy, P., Khazamov, T.A., Isakov, D., Kholkin, A.L., Investigation of the polymorphic phase transition in a single crystal of glycine (2014) Abstract Book of the International Conference Piezoresponce Force Microscopy and Nanoscale Phenomena in Polar Materials, p. 141. , In: July 14-17, Ural Federal University, Ekaterinburg, Russia; Petukhova, D.S., Vasilev, S.G., Nuraeva, A.S., Zelenovskiy, P.S., Seyedhosseini, E., Isakov, D., VYa, S., Kholkin, A.L., Peculiarities of domain structure of β-glycine single crystals (2014) Abstract Book of the International Conference Piezoresponce Force Microscopy and Nanoscale Phenomena in Polar Materials, p. 142. , In: (July 14-17, Ural Federal University, Ekaterinburg, Russia; Khazamov, T.A., Petukhova, D.S., Vasilev, S.G., Nuraeva, A.S., Zelenovskiy, P.S., Seyedhosseini, E., VYa, S., Kholkin, A.L., Domain and crystal structure of glycine nanocrystals (2014) Abstract Book of the International Conference Piezoresponce Force Microscopy and Nanoscale Phenomena in Polar Materials, p. 144. , In: (July 14-17, Ural Federal University, Ekaterinburg, Russia |