Simulation of spatial distribution of electric field after electron beam irradiation of MgO-doped LiNbO3 covered by resist layer / Chezganov D.S., Kuznetsov D.K., Shur V.Y. // Ferroelectrics. - 2016. - V. 496, l. 1. - P. 70-78.

ISSN:
00150193
Type:
Conference Paper
Abstract:
Spatial distribution of electric field after electron beam irradiation of MgO-doped LiNbO3 with resist layer on irradiated polar surface has been studied by computer simulation. The space distribution of electrons was simulated by Casino software and analyzed by original algorithm to construct analytical function. The distribution of electric field was evaluated by Comsol software. The correlation between the value of polar component of electric field on the resist - MgOLN interface and quality of the domain patterns has been demonstrated. The calculated optimal electron energy for given resist layer thickness allowed to create fine periodical domain structure for nonlinear optical application. © 2016 Taylor & Francis Group, LLC.
Author keywords:
computer simulation; electric field distribution; electron beam irradiation; Electron spatial distribution; lithium niobate; resist layer
Index keywords:
Computer simulation; Electric fields; Electron beams; Electron energy levels; Electrons; Irradiation; Analytical functions; Distribution of electric fields; Electric field distributions; Electron beam
DOI:
10.1080/00150193.2016.1157436
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964527147&doi=10.1080%2f00150193.2016.1157436&partnerID=40&md5=6b171ea2f470766333cf9192e6a392e3
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964527147&doi=10.1080%2f00150193.2016.1157436&partnerID=40&md5=6b171ea2f470766333cf9192e6a392e3
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Labfer Ltd., Ekaterinburg, Russian Federation
Author Keywords computer simulation; electric field distribution; electron beam irradiation; Electron spatial distribution; lithium niobate; resist layer
Funding Details UID RFMEFI594140011, Ministry of Education and Science of the Russian Federation
Funding Text The research was made possible in part by the Ministry of Education and Science of the Russian Federation (UID RFMEFI594140011), by RFBR (Grants 13-02-01391-a, 14-02-31255-mol-a and 15-32-21102-mol-a-ved), by Government of the Russian Federation (Act 211, Agreement 02. A03.21.0006).
References Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J Nonlinear Opt Phys Mater, 6, pp. 549-592; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO 3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation (1993) Appl Phys Lett, 62, pp. 435-436; Myers, L.E., Eckhardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3 (1995) J Opt Soc Am B., 12, pp. 2102-2116; Ross, G.W., Pollnau, M., Smith, P.G.R., Clarkson, W.A., Britton, P.E., Hanna, D.C., Generation of high-power blue light in periodically poled LiNbO 3 (1998) Opt Lett, 23, pp. 171-173; Shur, V.Y.A., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics, 340, pp. 3-16; Shur, V.Y.A., Nano-And micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, pp. 622-669. , In: Z. G. Ye, ed. Cambridge: Woodhead Publishing; Shur, V.Y.A., Akhmatkhanov, A.R., Baturin, I.S., Micro-And nano-domain engineering in lithium niobate (2015) Appl Phys Rev, 2, p. 040604; Ito, H., Takyu, C., Inaba, H., Fabrication of periodic domain grating in LiNbO 3 by electron beam writing for application of nonlinear optical processes (1991) Electronics Lett, 27, pp. 1221-1222; Yamada, M., Kishima, K., Fabrication of periodically reversed domain structure for SHG in LiNbO 3 by direct electron beam lithography at room temperature (1991) Electronics Lett, 27, pp. 828-829; Nutt, A., Gopalan, V., Gupta, M., Domain inversion in LiNbO 3 using direct electron-beam writing (1992) Appl Phys Lett, 60, pp. 2828-2830; Fujimura, M., Kintaka, K., Suhara, T., Nishihara, H., LiNbO 3 waveguide quasi-phase-matching second harmonic generation devices with ferroelectric-domain-inverted gratings formed by electron-beam scanning (1993) J Lightwave Technol, 11, pp. 1360-1368; Kurimura, S., Shimoya, I., Uesu, Y., Domain inversion by an electron-beam-induced electric field in MgO:LiNbO 3, LiNbO 3 and LiTaO 3 (1996) Jpn J Appl Phys, 35, pp. L31-L33; Restoin, C., Darraud-Taupiac, C., Decossas, J.L., Vareille, J.C., Couderc, V., Barthélémy, A., Martinez, A., Hauden, J., Electron-beam poling on Ti:LiNbO 3 (2001) Appl Opt, 40, pp. 6056-6061; Restoin, C., Darraud-Taupiac, C., Decossas, J.L., Vareille, J.C., Hauden, J., Martinez, J., Ferroelectric domain inversion by electron beam on LiNbO 3 and Ti:LiNbO 3 (2000) J Appl. Phys, 88, pp. 6665-6668; Restoin, C., Massy, S., Darraud-Taupiac, C., Barthelemy, A., Fabrication of 1D and 2D structures at submicrometer scale on lithium niobate by electron beam bombardment (2003) Optical Materials, 22, pp. 193-199; He, J., Tang, S.H., Qin, Y.Q., Dong, P., Zhang, H.Z., Kang, C.H., Sun, W.X., Shen, Z.X., Two-dimensional structures of ferroelectric domain inversion in LiNbO 3 by direct electron beam lithography (2003) J Appl Phys, 93, pp. 9943-9946; Mateos, L., Bausá, L.E., Ramírez, M.O., Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO 3 fabricated by direct electron beam writing (2013) Appl Phys Lett, 102, p. 042910; Kokhanchik, L.S., Volk, T.R., Domain inversion in LiNbO 3 and Zn-doped LiNbO 3 crystals by the electron-beam irradiation of the nonpolar Y-surface (2013) Appl Phys B., 110, pp. 367-373; Glickman, Y., Winebrand, E., Arie, A., Rosenman, G., Electron-beam-induced domain poling in LiNbO 3 for two-dimensional nonlinear frequency conversion (2006) Appl Phys Lett, 88, p. 011103; Li, X., Terabe, K., Hatano, H., Kitamura, K., Electron-beam domain writing in stoichiometric LiTaO 3 single crystal by utilizing resist layer (2006) Jpn J Appl Phys, 45, pp. L399-L402; Li, X., Terabe, K., Hatano, H., Kitamura, K., Domain patterning in LiNbO 3 and LiTaO 3 by focused electron beam (2006) J Cryst Growth, 292, pp. 324-327; Emelin, E.V., Il'In, A.I., Kokhanchik, L.S., Recording of domains by an electron beam on the surface of +Z cuts of lithium niobate (2013) Phys Solid State, 55, pp. 540-546; Shur, V.Y.A., Chezganov, D.S., Alikin, D.O., Neradovskiy, M.M., Kuznetsov, D.K., Smirnov, M.M., Domain switching by electron beam irradiation of Z+ polar surface in Mg-doped lithium niobate (2014) Appl Phys Lett, 105, p. 052908; Volk, T., Wöhlecke, M., (2008) Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, , Berlin, Heidelberg: Springer-Verlag; Shur, V.Y.A., Chezganov, D.S., Akhmatkhanov, A.R., Kuznetsov, D.K., Domain patterning by electron beam of MgO doped lithium niobate covered by resist (2015) Appl Phys Lett, 106, p. 232902; Chezganov, D.S., Smirnov, M.M., Kuznetsov, D.K., Shur, V.Y.A., Electron beam domain patterning of MgO-doped lithium niobate crystals covered by resist layer (2015) Ferroelectrics, 476, pp. 117-126; Maslovskaya, A.G., Physical and mathematical modeling of the electron beam induced charging of ferroelectrics during the process of domain structure switching (2013) J Surface Investigation X-ray, Synchrotron and Neutron Techniques, 7, pp. 680-684; Kotera, M., Simulation of time-dependent charging of resist on Si under electron-beam irradiation (2001) J Vac Sc Tech B., 19, p. 2516; Suga, H., Tadokoro, H., Kotera, M., A simulation of electron beam induced charging-up of insulators (1998) Electron Microscopy, 1, pp. 177-178; Maslovskaya, A.G., Sivunov, A.V., Simulation of electron injection and charging processes in ferroelectrics modified with the SEM-Techniques (2014) Solid State Phenomena, 213, pp. 119-124; Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., Rauvin, R., CASINO V2.42-A fast and easy-To-use modeling tool for scanning electron microscopy and microanalysis users (2007) Scanning, 29, pp. 92-101; Shur, V.Y.A., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory and Applications, pp. 178-214. , In: J. WP. Schmelzer, ed. Weinheim: Wiley-VCH; Shur, V.Y.A., Kinetics of ferroelectric domains: Application of general approach to LiNbO 3 and LiTaO 3 (2006) J Mater Sci, 41, pp. 199-210; Shur, V.Y.A., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures (2012) J Appl Phys, 112, p. 104113
Correspondence Address Chezganov, D.S.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: dmit.chezganov@gmail.com
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus