Investigation of domain kinetics in congruent lithium niobate modified by proton exchange / Neradovskiy M.M., Shur V.Y., Mingaliev E.A., Zelenovskiy P.S., Ushakova E.S., Tronche H., Baldi P., De Micheli M.P. // Ferroelectrics. - 2016. - V. 496, l. 1. - P. 110-119.

ISSN:
00150193
Type:
Conference Paper
Abstract:
The domain structure evolution has been studied in congruent lithium niobate crystals with surface layers modified by three different proton exchange techniques. The significant decrease of the nucleation threshold field and qualitative change of domain rays nucleation and growth have been revealed. The formation of a broad domain boundary and dendrite domain structure as a result of nanodomains merging in front of the moving rays has been demonstrated. The obtained effects have been attributed to features of the domain kinetics induced by built-in electric field and retardation of the bulk screening of depolarization field. © 2016 Taylor & Francis Group, LLC.
Author keywords:
confocal Raman microscopy; nonlinear optics; piezoresponse force microscopy; Waveguide
Index keywords:
Crystal structure; Electric fields; Heterojunction bipolar transistors; Nonlinear optics; Nucleation; Scanning probe microscopy; Waveguides; Built-in electric fields; Confocal Raman microscopy; Congru
DOI:
10.1080/00150193.2016.1155036
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964489791&doi=10.1080%2f00150193.2016.1155036&partnerID=40&md5=60873ffd8d625de2129b787392ee8963
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964489791&doi=10.1080%2f00150193.2016.1155036&partnerID=40&md5=60873ffd8d625de2129b787392ee8963
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Laboratory of Condensed Matter Physics, University of Nice Sophia-Antipolis, Nice, France
Author Keywords confocal Raman microscopy; nonlinear optics; piezoresponse force microscopy; Waveguide
References Shur, V.Y.A., Nano-And micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, pp. 622-669. , In: Z. G. Ye, ed. Cambridge: Woodhead Publishing; Tanzilli, S., Tittel, W., De Riedmatten, H., Zbinden, H., Baldi, P., De Micheli, M.P., Ostrowsky, D.B., Gisin, N., PPLN waveguide for quantum communication (2002) Eur Phys J D., 18, pp. 155-160; Wang, S., Pasiskevicius, V., Hellstram, J., Laurell, F., Karlsson, H., First-order type II quasi-phase-matched UV generation in periodically poled KTP (1999) Opt Lett, 24, pp. 978-980; Alikin, D.O., Ievlev, A.V., Turygin, A.P., Lobov, A.I., Kalinin, S.V., Shur, V.Y.A., Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals (2015) Appl Phys Lett, 106, p. 182902; Sohler, W., Hu, H., Ricken, R., Quiring, V., Vannahme, C., Herrmann, H., Büchter, D., Min, Y., Integrated optical devices in lithium niobate (2008) Opt Photonics News, 19, pp. 24-31; Jackel, J.L., Proton exchange for high-index waveguides in LiNbO 3 (1982) Appl Phys Lett, 41, pp. 607-608; De Micheli, M.P., Botineau, J., Neveu, S., Sibillot, P., Ostrowsky, D.B., Papuchon, M., Independent control of index and profiles in proton-exchanged lithium niobate guides (1983) Opt Lett, 8, pp. 114-115; De Micheli, M.P., Fabrication and characterization of proton exchanged waveguides in periodically poled congruent lithium niobate (2006) Ferroelectrics, 340, pp. 49-62; Stepanenko, O., Quillier, E., Tronche, H., Baldi, P., De Micheli, M.P., Highly confining planar proton exchanged waveguides on z-cut LiNbO 3 without degrading its nonlinear coefficients: The HISoPE process (2014) IEEE Photonic Tech L., pp. 1557-1560; Shur, V.Y.A., Neradovskiy, M.M., Dolbilov, M.A., Lobov, A.I., Zelenovskiy, P.S., Ushakov, A.D., Ushakova, E.S., De Micheli, M.P., Formation of broad domain boundary in congruent lithium niobate modified by proton exchange (2015) Ferroelectrics, 476, pp. 146-155; Dolbilov, M.A., Shur, V.Y.A., Shishkina, E.V., Angudovich, E.S., Ushakov, A.D., Baldi, P., De Micheli, M.P., Formation of nanodomain structure in front of the moving domain wall in lithium niobate single crystal modified by proton exchange (2013) Ferroelectrics, 442, pp. 82-91; Neradovskiy, M.M., Shur, V.Y.A., Naumova, N.A., Alikin, D.O., Lobov, A.I., Tronche, H., Quiller, E., De Micheli, M.P., Fabrication of SPE waveguides on PPLN: Formation of nanodomains and their impact on the SHG efficiency (2015) Ferroelectrics, 476, pp. 127-133; Shur, V.Y.A., Gruverman, A.L., Ponomarev, N.Y., Rumyantsev, E.L., Tonkacheva, N.A., Domain structure kinetics in ultrafast polarization switching in lead germanate (1991) JETP Lett, 53, pp. 615-619; White, J.M., Heidrich, P.F., Optical waveguide refractive index profiles determined from measurement of mode indices: A simple analysis (1976) Appl Optics, 15, pp. 151-155; Shur, V.Y.A., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO 3 and LiTaO 3 crystals (2011) J Appl Phys, 110, p. 052013; Shur, V.Y.A., Shishkin, E.I., Nikolaeva, E.V., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Dolbilov, M.A., Study of nanoscale domain structure formation using Raman confocal microscopy (2010) Ferroelectrics, 398, pp. 91-97; Shur, V.Y.A., Zelenovskiy, P.S., Micro-And nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy (2014) J Appl Phys, 116, p. 066802; Shur, V.Y.A., Kuznetsov, D.K., Lobov, A.I., Nikolaeva, E.V., Dolbilov, M.A., Orlov, A.N., Osipov, V.V., Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions (2006) Ferroelectrics, 341, pp. 85-93; Shur, V.Y.A., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures (2012) J Appl Phys, 112, p. 104113; Shur, V.Y.A., Alikin, D.O., Ievlev, A.V., Dolbilov, M.A., Sarmanova, M.F., Gavrilov, N.V., Formation of nanodomain structures during polarization reversal in congruent lithium niobate implanted with Ar ions (2012) IEEE Trans Ultrason Ferroelectr Freq Control, 59, pp. 1934-1941; Kolmogorov, A.N., On the statistical theory of the crystallization of metals (1937) Izv Akad Nauk USSR ser Math, 1, pp. 355-359; Shur, V.Y.A., Rumyantsev, E.L., Makarov, S.D., Volegov, V.V., How to extract information about domain kinetics in thin ferroelectric films from switching transient current data (1994) Integr Ferroelectr, 5, pp. 293-301
Correspondence Address Shur, V.Y.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: vladimir.shur@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus