Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate / Chezganov D.S., Vlasov E.O., Neradovskiy M.M., Gimadeeva L.V., Neradovskaya E.A., Chuvakova M.A., Tronche H., Doutre F., Baldi P., De Micheli M.P., Shur V.Y. // Applied Physics Letters. - 2016. - V. 108, l. 19.

ISSN:
00036951
Type:
Article
Abstract:
Formation of domain structure by electron beam irradiation in congruent lithium niobate covered by surface dielectric layer with planar and channel waveguides produced by Soft Proton Exchange (SPE) process has been studied. Formation of domains with arbitrary shapes as a result of discrete switching has been revealed. The fact was attributed to ineffective screening of depolarization field in the crystals with a surface layer modified by SPE process. The dependences of the domain sizes on the dose and the distance between irradiated areas have been revealed. Finally, we have demonstrated that electron beam irradiation of lithium niobate crystals with surface resist layer can produce high quality periodical domain patterns after channel waveguide fabrication. Second harmonic generation with normalized nonlinear conversion efficiency up to 48%/(W cm2) has been achieved in such waveguides. © 2016 Author(s).
Author keywords:
Index keywords:
Electron beams; Irradiation; Lithium; Niobium compounds; Nonlinear optics; Plasma filled waveguides; Waveguides; Channel waveguide; Congruent lithium niobate; Depolarization fields; Domain structure;
DOI:
10.1063/1.4949360
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84971402230&doi=10.1063%2f1.4949360&partnerID=40&md5=b98f62facf8208ed1dc6e4efeb7c2140
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 192903
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84971402230&doi=10.1063%2f1.4949360&partnerID=40&md5=b98f62facf8208ed1dc6e4efeb7c2140
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Labfer Ltd., Ekaterinburg, Russian Federation; Laboratoire de Physique de la Matière Condensée, University of Nice-Sophia Antipolis, Nice, France
Funding Details RFBR, Russian Foundation for Basic Research
Funding Text The authors would like to acknowledge V. Kvashnin for participation in the experiments, E. Vaskina, Dr. A. R. Akhmatkhanov, and Dr. D. O. Alikin for technical assistance. The equipment of the Ural Center for Shared Use Modern nanotechnology UrFU was used. The research was made possible, in part, by RFBR (15-32-21102-mol-a-ved), by Government of the Russian Federation (Act 211, Agreement No. 02.A03.21.0006), and by President of Russian Federation grant for young scientists (Contract No. 14.Y30.16.8441-MK). V.S. acknowledges financial support within the State Task from the Ministry of Education and Science of Russian Federation (Project No. 1366.2014/236).
References Byer, R.L., (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549; Berger, V., (1998) Phys. Rev. Lett., 81, p. 4136; Broderick, N.G.R., Ross, G.W., Offerhaus, H.L., Richardson, D.J., Hanna, D.C., (2000) Phys. Rev. Lett., 84, p. 4345; Shur, V.Ya., (2006) J. Mater. Sci., 41, p. 199; Bazzan, M., Sada, C., (2015) Appl. Phys. Rev., 2; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., (2000) Ferroelectrics, 236, p. 129; Ishizuki, H., Shoji, I., Taira, T., (2003) Appl. Phys. Lett., 82, p. 4062; Volk, T., Wöhlecke, M., (2008) Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, p. 201. , (Springer, Berlin, Heidelberg); Haycock, P.W., Townsend, P.D., (1986) Appl. Phys. Lett., 48, p. 698; Ito, H., Takyu, C., Inaba, H., (1991) Electron. Lett., 27, p. 1221; Nutt, A.C.G., Gopalan, V., Gupta, M.C., (1992) Appl. Phys. Lett., 60, p. 2828; He, J., Tang, S.H., Qin, Y.Q., Dong, P., Zhang, H.Z., Kang, C.H., Sun, W.X., Shen, Z.X., (2003) J. Appl. Phys., 93, p. 9943; Kokhanchik, L.S., Palatnikov, M.N., Shcherbina, O.B., (2011) Phase Transitions, 84, p. 797; Kokhanchik, L.S., Volk, T.R., (2013) Appl. Phys. B, 110, p. 367; Mateos, L., Bausá, L.E., Ramírez, M.O., (2014) Opt. Mater. Express, 4, p. 1077; Shur, V.Ya., Chezganov, D.S., Smirnov, M.M., Alikin, D.O., Neradovskiy, M.M., Kuznetsov, D.K., (2014) Appl. Phys. Lett., 105; Restoin, C., Darraud-Taupiac, C., Decossas, J.-L., Vareille, J.-C., Couderc, V., Barthélémy, A., Martinez, A., Hauden, J., (2001) Appl. Opt., 40, p. 6056; Volk, T.R., Kokhanchik, L.S., Gainutdinov, R.V., Bodnarchuk, Y.V., Shandarov, S.M., Borodin, M.V., Lavrov, S.D., Chen, F., (2015) J. Lightwave Technol., 33, p. 4761; Wang, X., Zhou, Y., Madsen, C.K., (2014) J. Lightwave Technol., 32, p. 2989; Restoin, C., Darraud-Taupiac, C., Decossas, J.L., Vareille, J.C., Hauden, J., Martinez, A., (2000) J. Appl. Phys., 88, p. 6665; Kokhanchik, L.S., Borodin, M.V., Shandarov, S.M., Burimov, N.I., Shcherbina, V.V., Volk, T.R., (2010) Phys. Solid State, 52, p. 1722; Li, X., Terabe, K., Hatano, H., Kitamura, K., (2006) J. Cryst. Growth, 292, p. 324; Li, X., Terabe, K., Hatano, H., Kitamura, K., (2006) Jpn. J. Appl. Phys., Part 2, 45, p. L399; Chezganov, D.S., Smirnov, M.M., Kuznetsov, D.K., Shur, V.Ya., (2015) Ferroelectrics, 476, p. 117; Shur, V.Ya., Chezganov, D.S., Akhmatkhanov, A.R., Kuznetsov, D.K., (2015) Appl. Phys. Lett., 106; Chezganov, D.S., Kuznetsov, D.K., Shur, V.Ya., (2016) Ferroelectrics, 496, p. 70; Becker, R.A., (1983) Appl. Phys. Lett., 43, p. 131; Suhara, T., Tazaki, H., Nishihara, H., (1989) Electron. Lett., 25, p. 1326; Yi-Yan, A., (1983) Appl. Phys. Lett., 42, p. 633; Suchoski, P.G., Findakly, T.K., Leonberger, F.J., (1988) Opt. Lett., 13, p. 1050; Cao, X., Srivastava, R., Ramaswamy, R.V., Natour, J., (1991) IEEE Photonics Technol. Lett., 3, p. 25; Fujimura, M., Suhara, T., Nishihara, H., (1992) Electron. Lett., 28, p. 721; Fujimura, M., Kintaka, K., Suhara, T., Nishihara, H., (1992) Electron. Lett., 28, p. 1868; Fujimura, M., Kintaka, K., Suhara, T., Nishihara, H., (1993) J. Lightwave Technol., 11, p. 1360; Parameswaran, K.R., Route, R.K., Kurz, J.R., Roussev, R.V., Fejer, M.M., Fujimura, M., (2002) Opt. Lett., 27, p. 179; Chanvillard, L., Aschiéri, P., Baldi, P., Ostrowsky, D.B., De Micheli, M., Huang, L., Bamford, D.J., (2000) Appl. Phys. Lett., 76, p. 1089; Kostritskii, S.M., Korkishko, Y.N., Fedorov, V.A., Mitrokhin, V.P., Sevostyanov, O.G., Chirkova, I.M., Stepanenko, O., Micheli, M.D., (2014) J. Eur. Opt. Soc. Rapid Publ., 9, p. 14055; Chen, K.X., Li, X.P., Zheng, Y.L., Chiang, K.S., (2015) IEEE Photonics Technol. Lett., 27, p. 1224; Neradovskiy, M.M., Shur, V.Ya., Naumova, N.A., Alikin, D.O., Lobov, A.I., Tronche, H., Quiller, E., De Micheli, M.P., (2015) Ferroelectrics, 476, p. 127; Neradovskiy, M.M., Shur, V.Ya., Mingaliev, E.A., Zelenovskiy, P.S., Ushakova, E.S., Tronche, H., Baldi, P., De Micheli, M.P., (2016) Ferroelectrics, 496, p. 110; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., (2000) Appl. Phys. Lett., 76, p. 143; Shur, V.Ya., (2006) Ferroelectrics, 340, p. 3; Shur, V.Ya., Akhmatkhanov, A.R., Baturin, I.S., (2015) Appl. Phys. Rev., 2; Shur, V.Ya., Shishkin, E., Rumyantsev, E., Nikolaeva, E., Shur, A., Batchko, R., Fejer, M., Kitamura, K., (2004) Ferroelectrics, 304, p. 111; Shur, V.Ya., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., (2011) Appl. Phys. Lett., 99; Shur, V.Ya., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., (2012) J. Appl. Phys., 112; Dolbilov, M.A., Shishkin, E.I., Shur, V.Ya., Tascu, S., Baldi, P., De Micheli, M.P., (2010) Ferroelectrics, 398, p. 108
Correspondence Address Chezganov, D.S.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: chezganov.dmitry@urfu.ru
Publisher American Institute of Physics Inc.
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus