References |
Scott, J.F., Nanoferroelectrics: Statics and dynamics (2006) J. Phys.: Condens. Matter, 18, p. R361; Gruverman, A., Kholkin, A., Nanoscale ferroelectrics: Processing, characterization and future trends (2006) Rep. Prog. Phys., 69, p. 2443; Alexe, M., Gruverman, A., (2004) Nanoscale Characterization of Ferroelectric Materials, , edited by (Springer, Heidelberg); Kalinin, S.V., Gruverman, A., (2007) Scanning Probe Microscopy of Electrical and Electromechanical Phenomena at the Nanoscale, , edited by (Springer, Berlin); Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Local polarization dynamics in ferroelectric materials (2010) Rep. Prog. Phys., 73, p. 056502; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Karapetian, E., Mirman, B., Eliseev, E.A., Morozovska, A.N., Nanoscale electromechanics of ferroelectric and biological systems: A new dimension in scanning probe microscopy (2007) Annu. Rev. Mater. Res., 37, p. 189; Ievlev, A.V., Kalinin, S.V., Data encoding based on the shape of the ferroelectric domains produced by using a scanning probe microscope tip (2015) Nanoscale, 7, p. 11040; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl. Phys. Lett., 86, p. 012906; Molotskii, M., Agronin, A., Urenski, P., Shvebelman, M., Rosenman, G., Rosenwaks, Y., Ferroelectric Domain Breakdown (2003) Phys. Rev. Lett., 90, p. 107601; Woo, J., Hong, S., Setter, N., Shin, H., Jeon, J.-U., Pak, Y.E., No, K., Quantitative analysis of the bit size dependence on the pulse width and pulse voltage in ferroelectric memory devices using atomic force microscopy (2001) J. Vac. Sci. Technol. B., 19, p. 818; Molotskii, M.I., Shvebelman, M.M., Dynamics of ferroelectric domain formation in an atomic force microscope (2005) Philos. Mag., 85, p. 1637; Abplanalp, M., (2001) Piezoresponse Scanning Force Microscopy of Ferroelectric Domains, , Ph.D. thesis, Swiss Federal Institute of Technology; Agronin, A., Molotskii, M., Rosenwaks, Y., Rosenman, G., Rodriguez, B.J., Kingon, A.I., Gruverman, A., Dynamics of ferroelectric domain growth in the field of atomic force microscope (2006) J. Appl. Phys., 99, p. 104102; Hong, S., Ecabart, B., Colla, E.L., Setter, N., Three-dimensional ferroelectric domain imaging of bulk (Equation presented) by atomic force microscopy (2004) Appl. Phys. Lett., 84, p. 2382; Stolichnov, I., Malin, L., Colla, E., Tagantsev, A.K., Setter, N., Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb (Zr, Ti) O3 films (2005) Appl. Phys. Lett., 86, p. 012902; Kalinin, S.V., Bonnell, D.A., Local potential and polarization screening on ferroelectric surfaces (2001) Phys. Rev. B, 63, p. 125411; Ievlev, A.V., Jesse, S., Morozovska, A.N., Strelcov, E., Eliseev, E.A., Pershin, Y.V., Kumar, A., Kalinin, S.V., Intermittency quasiperiodicity and chaos in probe-induced ferroelectric domain switching (2014) Nat. Phys., 10, p. 59; Kholkin, A.L., Bdikin, I.K., Shvartsman, V.V., Pertsev, N.A., Anomalous polarization inversion in ferroelectrics via scanning force microscopy (2007) Nanotechnology, 18, p. 095502; Bühlmann, S., Colla, E., Muralt, P., Polarization reversal due to charge injection in ferroelectric films (2005) Phys. Rev. B, 72, p. 214120; Kim, Y., Bühlmann, S., Hong, S., Kim, S.-H., No, K., Injection charge assisted polarization reversal in ferroelectric thin films (2007) Appl. Phys. Lett., 90, p. 072910; Ievlev, A.V., Morozovska, A.N., Eliseev, E.A., Shur, V.Y., Kalinin, S.V., Ionic field effect and memristive phenomena in single-point ferroelectric domain switching (2014) Nat. Commun., 5, p. 5545; Shur, V.Y., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, p. 97; Zelenovskiy, P.S., Shur, V.Y., Bourson, P., Fontana, M.D., Kuznetsov, D.K., Mingaliev, E.A., Raman study of neutral and charged domain walls in lithium niobate (2010) Ferroelectrics, 398, p. 34; Shur, V.Y., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation (2011) Appl. Phys. Lett., 99, p. 082901; Shur, V.Y., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and raman confocal microscopy in (Equation presented) and (Equation presented) crystals (2011) J. Appl. Phys., 110, p. 052013; Landauer, R., Electrostatic considerations in (Equation presented) domain formation during polarization reversal (1957) J. Appl. Phys., 28, p. 227; Molotskii, M., Generation of ferroelectric domains in atomic force microscope (2003) J. Appl. Phys., 93, p. 6234; Shvebelman, M., (2005) Static and Dynamic Properties of Ferroelectric Domains Studied by Atomic Force Microscopy, , Ph.D. thesis, Tel Aviv University; Kalinin, S.V., Gruverman, A., Rodriguez, B.J., Shin, J., Baddorf, A.P., Karapetian, E., Kachanov, M., Nanoelectromechanics of polarization switching in piezoresponse force microscopy (2005) J. Appl. Phys., 97, p. 074305; Emelyanov, A.Y., Coherent ferroelectric switching by atomic force microscopy (2005) Phys. Rev. B, 71, p. 132102; Morozovska, A.N., Svechnikov, S.V., Eliseev, E.A., Jesse, S., Rodriguez, B.J., Kalinin, S.V., Piezoresponse force spectroscopy of ferroelectric-semiconductor materials (2007) J. Appl. Phys., 102, p. 114108; Morozovska, A.N., Kalinin, S.V., Eliseev, E.A., Gopalan, V., Svechnikov, S.V., The interaction of an 180-degree ferroelectric domain wall with a biased scanning probe microscopy tip: Effective wall geometry and thermodynamics in ginzburg-landau-devonshire theory (2008) Phys. Rev. B, 78, p. 125407; Aravind, V.R., Morozovska, A.N., Bhattacharyya, S., Lee, D., Jesse, S., Grinberg, I., Li, Y.L., Kalinin, S.V., Correlated polarization switching in the proximity of a 180° domain wall (2010) Phys. Rev. B, 82, p. 024111; Ievlev, A.V., Alikin, D.O., Morozovska, A.N., Varenyk, O.V., Eliseev, E.A., Kholkin, A.L., Shur, V.Y., Kalinin, S.V., Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals (2014) ACS Nano, 9, p. 769; Maksymovych, P., Jesse, S., Huijben, M., Ramesh, R., Morozovska, A.N., Choudhury, S., Chen, L.-Q., Kalinin, S.V., Intrinsic Nucleation Mechanism and Disorder Effects in Polarization Switching on Ferroelectric Surfaces (2009) Phys. Rev. Lett., 102, p. 017601; Morozovska, A.N., Eliseev, E.A., Li, Y., Svechnikov, S.V., Maksymovych, P., Shur, V.Y., Gopalan, V., Kalinin, S.V., Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-ginzburg-devonshire approach (2009) Phys. Rev. B, 80, p. 214110; Alikin, D.O., Ievlev, A.V., Turygin, A.P., Lobov, A.I., Kalinin, S.V., Shur, V.Y., Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals (2015) Appl. Phys. Lett., 106, p. 182902; Pertsev, N.A., Kholkin, A.L., Subsurface nanodomains with in-plane polarization in uniaxial ferroelectrics via scanning force microscopy (2013) Phys. Rev. B, 88, p. 174109; Choudhury, S., Li, Y., Odagawa, N., Vasudevarao, A., Tian, L., Capek, P., Dierolf, V., Gopalan, V., The influence of 180° ferroelectric domain wall width on the threshold field for wall motion (2008) J. Appl. Phys., 104, p. 084107; Ishibashi, Y., Computational method of activation energy of thick domain walls (1979) J. Phys. Soc. Jpn., 46, p. 1254; Miller, R., Weinreich, G., Mechanism for the sidewise motion of 180 domain walls in barium titanate (1960) Phys. Rev., 117, p. 1460; Burtsev, E.V., Chervonobrodov, S.P., Some problems of 180°-switching in ferroelectrics (1982) Ferroelectrics, 45, p. 97; Shin, Y.H., Grinberg, I., Chen, I.W., Rappe, A.M., Nucleation and growth mechanism of ferroelectric domain-wall motion (2007) Nature (London, 449, p. 881; Tagantsev, A.K., Gerra, G., Interface-induced phenomena in polarization response of ferroelectric thin films (2006) J. Appl. Phys., 100, p. 051607; Ashcroft, N.W., Mermin, N.D., (1976) Solid State Physics, p. 826. , (Holt, Rinehart, and Winston, New York), pp; http://link.aps.org/supplemental/10.1103/PhysRevB.93.165439, See Supplemental Material at for a wide-gap ferroelectric semiconductor; Boysen, H., Altorfer, F., A neutron powder investigation of the high-temperature structure and phase transition in (Equation presented) (1994) Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 50, p. 405; Abrahams, S.C., Reddy, J.M., Bernstein, J.L., Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 C (1966) J. Phys. Chem. Solids, 27, p. 997; Shiozaki, Y., Mitsui, T., Powder neutron diffraction study of (Equation presented) (1963) J. Phys. Chem. Solids, 24, p. 1057; Morozovska, A.N., Svechnikov, S.V., Eliseev, E.A., Kalinin, S.V., Extrinsic size effect in piezoresponse force microscopy of thin films (2007) Phys. Rev. B, 76, p. 054123; Morozovska, A.N., Eliseev, E.A., Kalinin, S.V., The effective response and resolution function of surface layers and thin films in Piezoresponse Force Microscopy (2007) J. Appl. Phys., 102, p. 074105; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Shur, V.Y., Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors (2011) Phys. Rev. B, 83, p. 235313; Chen, J., Gruverman, A., Morozovska, A.N., Valanoor, N., (2014) J. Appl. Phys., 116, p. 124109. , Sub-critical field domain reversal in epitaxial ferroelectric films; Paruch, P., Giamarchi, T., Tybell, T., Triscone, J.M., Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films (2006) J. Appl. Phys., 100, p. 051608; Sidorkin, A.S., (2006) Domain Structure in Ferroelectrics and Related Materials, , (Cambridge International Science, Cambridge, U.K.) |