Self-consistent theory of nanodomain formation on nonpolar surfaces of ferroelectrics / Morozovska A.N., Ievlev A.V., Obukhovskii V.V., Fomichov Y., Varenyk O.V., Shur V.Y., Kalinin S.V., Eliseev E.A. // Physical Review B. - 2016. - V. 93, l. 16.

ISSN:
24699950
Type:
Article
Abstract:
We propose a self-consistent theoretical approach capable of describing the features of the anisotropic nanodomain formation induced by a strongly inhomogeneous electric field of a charged scanning probe microscopy tip on nonpolar cuts of ferroelectrics. We obtained that a threshold field, previously regarded as an isotropic parameter, is an anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field is not material specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous polarization anisotropy along the main crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric perovskites, and low-symmetry incommensurate ferroelectrics. Obtained results quantitatively describe the differences at several times in the nanodomain length experimentally observed on X and Y cuts of LiNbO3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in strongly inhomogeneous electric fields. © 2016 American Physical Society.
Author keywords:
Index keywords:
нет данных
DOI:
10.1103/PhysRevB.93.165439
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964823137&doi=10.1103%2fPhysRevB.93.165439&partnerID=40&md5=00e4ad952e83e2441928a019b69307d2
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 165439
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964823137&doi=10.1103%2fPhysRevB.93.165439&partnerID=40&md5=00e4ad952e83e2441928a019b69307d2
Affiliations Institute of Physics, National Academy of Science of Ukraine, 46, pr. Nauky, Kyiv, Ukraine; Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Radiophysical Faculty 4g, Taras Shevchenko Kyiv National University, pr. Akademika Hlushkova, Kyiv, Ukraine; Institute for Problems of Materials Science, National Academy of Science of Ukraine, 3, Krjijanovskogo, Kyiv, Ukraine; Institute of Natural Sciences, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, Russian Federation
References Scott, J.F., Nanoferroelectrics: Statics and dynamics (2006) J. Phys.: Condens. Matter, 18, p. R361; Gruverman, A., Kholkin, A., Nanoscale ferroelectrics: Processing, characterization and future trends (2006) Rep. Prog. Phys., 69, p. 2443; Alexe, M., Gruverman, A., (2004) Nanoscale Characterization of Ferroelectric Materials, , edited by (Springer, Heidelberg); Kalinin, S.V., Gruverman, A., (2007) Scanning Probe Microscopy of Electrical and Electromechanical Phenomena at the Nanoscale, , edited by (Springer, Berlin); Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Local polarization dynamics in ferroelectric materials (2010) Rep. Prog. Phys., 73, p. 056502; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Karapetian, E., Mirman, B., Eliseev, E.A., Morozovska, A.N., Nanoscale electromechanics of ferroelectric and biological systems: A new dimension in scanning probe microscopy (2007) Annu. Rev. Mater. Res., 37, p. 189; Ievlev, A.V., Kalinin, S.V., Data encoding based on the shape of the ferroelectric domains produced by using a scanning probe microscope tip (2015) Nanoscale, 7, p. 11040; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl. Phys. Lett., 86, p. 012906; Molotskii, M., Agronin, A., Urenski, P., Shvebelman, M., Rosenman, G., Rosenwaks, Y., Ferroelectric Domain Breakdown (2003) Phys. Rev. Lett., 90, p. 107601; Woo, J., Hong, S., Setter, N., Shin, H., Jeon, J.-U., Pak, Y.E., No, K., Quantitative analysis of the bit size dependence on the pulse width and pulse voltage in ferroelectric memory devices using atomic force microscopy (2001) J. Vac. Sci. Technol. B., 19, p. 818; Molotskii, M.I., Shvebelman, M.M., Dynamics of ferroelectric domain formation in an atomic force microscope (2005) Philos. Mag., 85, p. 1637; Abplanalp, M., (2001) Piezoresponse Scanning Force Microscopy of Ferroelectric Domains, , Ph.D. thesis, Swiss Federal Institute of Technology; Agronin, A., Molotskii, M., Rosenwaks, Y., Rosenman, G., Rodriguez, B.J., Kingon, A.I., Gruverman, A., Dynamics of ferroelectric domain growth in the field of atomic force microscope (2006) J. Appl. Phys., 99, p. 104102; Hong, S., Ecabart, B., Colla, E.L., Setter, N., Three-dimensional ferroelectric domain imaging of bulk (Equation presented) by atomic force microscopy (2004) Appl. Phys. Lett., 84, p. 2382; Stolichnov, I., Malin, L., Colla, E., Tagantsev, A.K., Setter, N., Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb (Zr, Ti) O3 films (2005) Appl. Phys. Lett., 86, p. 012902; Kalinin, S.V., Bonnell, D.A., Local potential and polarization screening on ferroelectric surfaces (2001) Phys. Rev. B, 63, p. 125411; Ievlev, A.V., Jesse, S., Morozovska, A.N., Strelcov, E., Eliseev, E.A., Pershin, Y.V., Kumar, A., Kalinin, S.V., Intermittency quasiperiodicity and chaos in probe-induced ferroelectric domain switching (2014) Nat. Phys., 10, p. 59; Kholkin, A.L., Bdikin, I.K., Shvartsman, V.V., Pertsev, N.A., Anomalous polarization inversion in ferroelectrics via scanning force microscopy (2007) Nanotechnology, 18, p. 095502; Bühlmann, S., Colla, E., Muralt, P., Polarization reversal due to charge injection in ferroelectric films (2005) Phys. Rev. B, 72, p. 214120; Kim, Y., Bühlmann, S., Hong, S., Kim, S.-H., No, K., Injection charge assisted polarization reversal in ferroelectric thin films (2007) Appl. Phys. Lett., 90, p. 072910; Ievlev, A.V., Morozovska, A.N., Eliseev, E.A., Shur, V.Y., Kalinin, S.V., Ionic field effect and memristive phenomena in single-point ferroelectric domain switching (2014) Nat. Commun., 5, p. 5545; Shur, V.Y., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, p. 97; Zelenovskiy, P.S., Shur, V.Y., Bourson, P., Fontana, M.D., Kuznetsov, D.K., Mingaliev, E.A., Raman study of neutral and charged domain walls in lithium niobate (2010) Ferroelectrics, 398, p. 34; Shur, V.Y., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation (2011) Appl. Phys. Lett., 99, p. 082901; Shur, V.Y., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and raman confocal microscopy in (Equation presented) and (Equation presented) crystals (2011) J. Appl. Phys., 110, p. 052013; Landauer, R., Electrostatic considerations in (Equation presented) domain formation during polarization reversal (1957) J. Appl. Phys., 28, p. 227; Molotskii, M., Generation of ferroelectric domains in atomic force microscope (2003) J. Appl. Phys., 93, p. 6234; Shvebelman, M., (2005) Static and Dynamic Properties of Ferroelectric Domains Studied by Atomic Force Microscopy, , Ph.D. thesis, Tel Aviv University; Kalinin, S.V., Gruverman, A., Rodriguez, B.J., Shin, J., Baddorf, A.P., Karapetian, E., Kachanov, M., Nanoelectromechanics of polarization switching in piezoresponse force microscopy (2005) J. Appl. Phys., 97, p. 074305; Emelyanov, A.Y., Coherent ferroelectric switching by atomic force microscopy (2005) Phys. Rev. B, 71, p. 132102; Morozovska, A.N., Svechnikov, S.V., Eliseev, E.A., Jesse, S., Rodriguez, B.J., Kalinin, S.V., Piezoresponse force spectroscopy of ferroelectric-semiconductor materials (2007) J. Appl. Phys., 102, p. 114108; Morozovska, A.N., Kalinin, S.V., Eliseev, E.A., Gopalan, V., Svechnikov, S.V., The interaction of an 180-degree ferroelectric domain wall with a biased scanning probe microscopy tip: Effective wall geometry and thermodynamics in ginzburg-landau-devonshire theory (2008) Phys. Rev. B, 78, p. 125407; Aravind, V.R., Morozovska, A.N., Bhattacharyya, S., Lee, D., Jesse, S., Grinberg, I., Li, Y.L., Kalinin, S.V., Correlated polarization switching in the proximity of a 180° domain wall (2010) Phys. Rev. B, 82, p. 024111; Ievlev, A.V., Alikin, D.O., Morozovska, A.N., Varenyk, O.V., Eliseev, E.A., Kholkin, A.L., Shur, V.Y., Kalinin, S.V., Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals (2014) ACS Nano, 9, p. 769; Maksymovych, P., Jesse, S., Huijben, M., Ramesh, R., Morozovska, A.N., Choudhury, S., Chen, L.-Q., Kalinin, S.V., Intrinsic Nucleation Mechanism and Disorder Effects in Polarization Switching on Ferroelectric Surfaces (2009) Phys. Rev. Lett., 102, p. 017601; Morozovska, A.N., Eliseev, E.A., Li, Y., Svechnikov, S.V., Maksymovych, P., Shur, V.Y., Gopalan, V., Kalinin, S.V., Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-ginzburg-devonshire approach (2009) Phys. Rev. B, 80, p. 214110; Alikin, D.O., Ievlev, A.V., Turygin, A.P., Lobov, A.I., Kalinin, S.V., Shur, V.Y., Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals (2015) Appl. Phys. Lett., 106, p. 182902; Pertsev, N.A., Kholkin, A.L., Subsurface nanodomains with in-plane polarization in uniaxial ferroelectrics via scanning force microscopy (2013) Phys. Rev. B, 88, p. 174109; Choudhury, S., Li, Y., Odagawa, N., Vasudevarao, A., Tian, L., Capek, P., Dierolf, V., Gopalan, V., The influence of 180° ferroelectric domain wall width on the threshold field for wall motion (2008) J. Appl. Phys., 104, p. 084107; Ishibashi, Y., Computational method of activation energy of thick domain walls (1979) J. Phys. Soc. Jpn., 46, p. 1254; Miller, R., Weinreich, G., Mechanism for the sidewise motion of 180 domain walls in barium titanate (1960) Phys. Rev., 117, p. 1460; Burtsev, E.V., Chervonobrodov, S.P., Some problems of 180°-switching in ferroelectrics (1982) Ferroelectrics, 45, p. 97; Shin, Y.H., Grinberg, I., Chen, I.W., Rappe, A.M., Nucleation and growth mechanism of ferroelectric domain-wall motion (2007) Nature (London, 449, p. 881; Tagantsev, A.K., Gerra, G., Interface-induced phenomena in polarization response of ferroelectric thin films (2006) J. Appl. Phys., 100, p. 051607; Ashcroft, N.W., Mermin, N.D., (1976) Solid State Physics, p. 826. , (Holt, Rinehart, and Winston, New York), pp; http://link.aps.org/supplemental/10.1103/PhysRevB.93.165439, See Supplemental Material at for a wide-gap ferroelectric semiconductor; Boysen, H., Altorfer, F., A neutron powder investigation of the high-temperature structure and phase transition in (Equation presented) (1994) Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 50, p. 405; Abrahams, S.C., Reddy, J.M., Bernstein, J.L., Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 C (1966) J. Phys. Chem. Solids, 27, p. 997; Shiozaki, Y., Mitsui, T., Powder neutron diffraction study of (Equation presented) (1963) J. Phys. Chem. Solids, 24, p. 1057; Morozovska, A.N., Svechnikov, S.V., Eliseev, E.A., Kalinin, S.V., Extrinsic size effect in piezoresponse force microscopy of thin films (2007) Phys. Rev. B, 76, p. 054123; Morozovska, A.N., Eliseev, E.A., Kalinin, S.V., The effective response and resolution function of surface layers and thin films in Piezoresponse Force Microscopy (2007) J. Appl. Phys., 102, p. 074105; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Shur, V.Y., Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors (2011) Phys. Rev. B, 83, p. 235313; Chen, J., Gruverman, A., Morozovska, A.N., Valanoor, N., (2014) J. Appl. Phys., 116, p. 124109. , Sub-critical field domain reversal in epitaxial ferroelectric films; Paruch, P., Giamarchi, T., Tybell, T., Triscone, J.M., Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films (2006) J. Appl. Phys., 100, p. 051608; Sidorkin, A.S., (2006) Domain Structure in Ferroelectrics and Related Materials, , (Cambridge International Science, Cambridge, U.K.)
Correspondence Address Morozovska, A.N.; Institute of Physics, National Academy of Science of Ukraine, 46, pr. Nauky, Ukraine; email: anna.n.morozovska@gmail.com
Publisher American Physical Society
Language of Original Document English
Abbreviated Source Title Phys. Rev. B
Source Scopus