Formation of snowflake domains during fast cooling of lithium tantalate crystals / Shur V.Ya., Kosobokov M.S., Mingaliev E.A., Kuznetsov D.K., Zelenovskiy P.S. // Journal of Applied Physics. - 2016. - V. 119, l. 14.

ISSN:
00218979
Type:
Article
Abstract:
Formation of the original dendrite snowflake-shape domains during fast cooling after heating above phase transition temperature by pulse laser irradiation was revealed in congruent lithium tantalate crystals. The effect was attributed to polarization reversal under the action of spatially nonuniform pyroelectric field. Two stages of the domain shape evolution at the surface were separated: (1) growth of circular domains by sideways motion of the domain walls and (2) backswitching leading to formation of the snowflake domains. The simulated spatial distribution of the pyroelectric field in regular two-dimensional structure was used for an explanation of the obtained results. The backswitching process in the surface layer has been attributed to change of the sign of the pyroelectric field at the domain wall. The snowflake domain shape is caused by the formation of isolated nanodomain fingers and hampering of their merging. © 2016 AIP Publishing LLC.
Author keywords:
Index keywords:
Snow; Backswitching process; Circular domains; Lithium tantalate; Polarization reversals; Pulse laser irradiations; Pyroelectric fields; Surface layers; Two-dimensional structures; Domain walls
DOI:
10.1063/1.4945671
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964501782&doi=10.1063%2f1.4945671&partnerID=40&md5=6134f85f583ab32308911bae837289f4
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 144101
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964501782&doi=10.1063%2f1.4945671&partnerID=40&md5=6134f85f583ab32308911bae837289f4
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
References Denton, R.T., (1967) J. Appl. Phys., 38, p. 1611; Smith, R.T., (1967) Appl. Phys. Lett., 11, p. 146; Glass, A., (1968) Phys. Rev., 172, p. 564; Meyer, R.A., (1972) Appl. Opt., 11, p. 613; Jepsen, P.U., Winnewisser, C., Schall, M., Schyja, V., Keiding, S.R., Helm, H., (1996) Phys. Rev. E, 53; Shur, V.Ya., (2010) Advanced Piezoelectric Material Science and Technology, pp. 204-238. , edited by K. Uchino (Woodhead Publishing Ltd); Shur, V.Ya., Nikolaeva, E.V., Shishkin, E.I., Kozhevnikov, V.L., Chernykh, A.P., Terabe, K., Kitamura, K., (2001) Appl. Phys. Lett., 79, p. 3146; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., (2001) Ferroelectrics, 257, p. 191; Shur, V.Ya., (2006) Ferroelectrics, 340, p. 3; Lazoul, M., Boudrioua, A., Simohamed, L.M., Fischer, A., Peng, L.-H., (2013) Opt. Lett., 38, p. 3892; Armstrong, J., Bloembergen, N., Ducuing, J., Pershan, P., (1962) Phys. Rev., 127, p. 1918; Matsumoto, S., Lim, E.J., Hertz, H.M., Fejer, M.M., (1991) Electron. Lett., 27, p. 2040; Bruner, A., Eger, D., Ruschin, S., (2004) J. Appl. Phys., 96, p. 7445; Yu, N.E., Kurimura, S., Nomura, Y., Kitamura, K., (2004) Jpn. J. Appl. Phys., Part 2, 43; Yu, N.E., Kurimura, S., Nomura, Y., Nakamura, M., Kitamura, K., Sakuma, J., Otani, Y., Shiratori, A., (2004) Appl. Phys. Lett., 84, p. 1662; Hum, D.S., Fejer, M.M., (2007) C. R. Phys., 8, p. 180; Sinha, S., Hum, D.S., Urbanek, K.E., Lee, Y., Digonnet, M.J.F., Fejer, M.M., Byer, R.L., (2008) J. Lightwave Technol., 26, p. 3866; Shur, V.Ya., Akhmatkhanov, A.R., Baturin, I.S., (2015) Appl. Phys. Rev., 2, p. 040604; Mizuuchi, K., Yamamoto, K., (1996) Opt. Lett., 21, p. 107; Meyn, J.P., Fejer, M.M., (1997) Opt. Lett., 22, p. 1214; Champert, P.A., Popov, S.V., Taylor, J.R., Meyn, J.P., (2000) Opt. Lett., 25, p. 1252; Meyn, J.P., Laue, C., Knappe, R., Wallenstein, R., Fejer, M.M., (2001) Appl. Phys. B, 73, p. 111; Bäumer, C., David, C., Tunyagi, A., Betzler, K., Hesse, H., Krätzig, E., Wöhlecke, M., (2003) J. Appl. Phys., 93, p. 3102; Busacca, A.C., D'Asaro, E., Pasquazi, A., Stivala, S., Assanto, G., (2008) Appl. Phys. Lett., 93, p. 121117; Aadhi, A., Apurv Chaitanya, N., Jabir, M.V., Singh, R.P., Samanta, G.K., (2015) Opt. Lett., 40, p. 33; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., (1993) Appl. Phys. Lett., 62, p. 435; Burns, W.K., McElhanon, W., Goldberg, L., (1994) IEEE Photonics Technol. Lett., 6, p. 252; Rosenman, G., Garb, K., Skliar, A., Oron, M., Eger, D., Katz, M., (1998) Appl. Phys. Lett., 73, p. 865; Li, D., Bonnell, D.A., (2008) Annu. Rev. Mater. Res., 38, p. 351; Shur, V.Ya., (2010) Ferroelectrics, 399, p. 97; Shur, V.Ya., Mingaliev, E.A., Kuznetsov, D.K., Kosobokov, M.S., (2013) Ferroelectrics, 443, p. 95; Kosobokov, M.S., Shur, V.Ya., Mingaliev, E.A., Avdoshin, S.V., Kuznetsov, D.K., (2015) Ferroelectrics, 476, p. 134; Shur, V.Ya., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., (2011) J. Appl. Phys., 110, p. 052013; Shur, V.Ya., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., (2013) Appl. Phys. Lett., 103, p. 242903; Shur, V.Ya., (2005) Nucleation Theory and Applications, p. 178. , Wiley-VCH, Weinheim, FRG; Lobov, A.I., Shur, V.Ya., Kuznetsov, D.K., Negashev, S.A., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., (2008) Ferroelectrics, 373, p. 99; Shur, V.Ya., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., (2012) J. Appl. Phys., 112, p. 104113; Shur, V.Ya., Kosobokov, M.S., Mingaliev, E.A., Karpov, V.R., (2015) AIP Adv., 5, p. 107110; Kalinin, S., Bonnell, D., (2001) Phys. Rev. B, 63, p. 125411; Fong, D.D., Kolpak, A.M., Eastman, J.A., Streiffer, S.K., Fuoss, P.H., Stephenson, G.B., Thompson, C., Rappe, A.M., (2006) Phys. Rev. Lett., 96, p. 127601; Strelcov, E., Ievlev, A.V., Jesse, S., Kravchenko, I.I., Shur, V.Ya., Kalinin, S.V., (2014) Adv. Mater., 26, p. 958; Ievlev, A.V., Morozovska, A.N., Shur, V.Ya., Kalinin, S.V., (2014) Appl. Phys. Lett., 104, p. 092908; Lee, H., Kim, T.H., Patzner, J.J., Lu, H., Lee, J.-W., Zhou, H., Chang, W., Eom, C.B., Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning (2016) Nano Lett., , published online; Huanosta, A., West, A.R., (1987) J. Appl. Phys., 61, p. 5386; Shur, V.Ya., (2006) J. Mater. Sci., 41, p. 199; Kuznetsov, D.K., Shur, V.Ya., Mingaliev, E.A., Negashev, S.A., Lobov, A.I., Rumyantsev, E.L., Novikov, P.A., (2010) Ferroelectrics, 398, p. 49
Correspondence Address Shur, V.Ya.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: vladimir.shur@urfu.ru
Publisher American Institute of Physics Inc.
CODEN JAPIA
Language of Original Document English
Abbreviated Source Title J Appl Phys
Source Scopus