References |
Jarosewich, E., Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses (1990) Meteoritics, 25, pp. 323-337; Dodd, R.T., Meteorites: A Petrological-Chemical Synthesis (1981), p. 368. , Cambridge University Press Cambridge; Sprenkel-Segel, E.L., Hanna, S.S., Mössbauer analysis of iron in stone meteorites (1964) Geochim. Cosmochim. Acta, 28, pp. 1913-1931; Grandjean, F., Long, G.J., Hautot, D., Whitney, D.L., A Mössbauer spectral study of the Jilin meteorite (1998) Hyperfine Interact., 116, pp. 105-115; Paliwal, B.S., Tripathi, R.P., Verma, H.C., Sharma, S.K., Classification of the Didwana-Rajod meteorite: a Mössbauer spectroscopic study (2000) Meteorit. Planet. Sci., 35, pp. 639-642; Verma, H.C., Jee, K., Tripathi, R.P., Systematics of Mössbauer absorption areas in ordinary chondrites and applications to newly fallen meteorite in Jodhpur, India (2003) Meteorit. Planet. Sci., 38, pp. 963-967; Menzies, O.N., Bland, P.A., Berry, F.J., Cressey, G., A Mössbauer spectroscopy and X-ray diffraction study of ordinary chondrites: quantification of modal mineralogy and implications for redox conditions during metamorphism (2005) Meteorit. Planet. Sci., 40, pp. 1023-1042; Valenzuela, M., Abdu, Y., Scorzelli, R.B., Duttine, M., Morata, D., Munayco, P., Room temperature 57Fe Mössbauer spectroscopy of ordinary chondrites from the Atacama Desert (Chile): constraining the weathering processes on desert meteorites (2007) Hyperfine Interact., 175, pp. 9-14; Cadogan, J.M., Devlin, E.J., Mössbauer study of the ordinary-chondrite meteorite Thylacine Hole–001 (2012) Hyperfine Interact., 208, pp. 91-94; Lipka, J., Sitek, J., Dekan, J., Degmová, J., Porubčan, V., Mössbauer study of Slovak meteorites (2013) Hyperfine Interact., 218, pp. 107-111; Cadogan, J.M., Rebbouh, L., Mills, J.V.J., Bland, P.A., An 57Fe Mössbauer study of three Australian L5 ordinary-chondrite meteorites: dating Kinclaven–001 (2013) Hyperfine Interact., 222, pp. S91-S98; Lipka, J., Sitek, J., .Dekan, J., Sedlačková, K., Analyses of Rumanová meteorite. Hyperfine Interact., 2014, 226, 565–569.; Gałazka-Friedman, J., Szlachta, K., Karwowski, Ł,·Woźniak, M. Mössbauer studies of Soltmany and Shisr 176 meteorites – comparison with other ordinary chondrites. Hyperfine Interact., 2014, 226:593–600.; Zhiganova, E.V., Grokhovsky, V.I., Oshtrakh, M.I., Study of ordinary chondrites by Mössbauer spectroscopy with high velocity resolution: identification of M1 and M2 sites in silicate phases (2007) Phys. Status Solidi A, 204, pp. 1185-1191; Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A., Determination of quadrupole splitting for 57Fe in M1 and M2 sites of both olivine and pyroxene in ordinary chondrites using Mössbauer spectroscopy with high velocity resolution (2007) Hyperfine Interact., 177, pp. 65-71; Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A., A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution (2008) Meteorit. Planet. Sci., 43, pp. 941-958; Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A., Mössbauer spectroscopy with high velocity resolution in the study of ordinary chondrites (2008) Hyperfine Interact., 186, pp. 61-69; Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A., Characterization of a Chelyabinsk LL5 meteorite fragment using Mössbauer spectroscopy with a high velocity resolution (2014) Hyperfine Interact., 226, pp. 559-564; Maksimova, A.A., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A., The 57Fe hyperfine interactions in the iron bearing phases in different fragments of Chelyabinsk LL5 meteorite: a comparative study using Mössbauer spectroscopy with a high velocity resolution (2015) Hyperfine Interact., 230, pp. 79-87; Kruse, O., Ericsson, T., A Mössbauer investigation of natural troilite from the Agpalilik meteorite (1988) Phys. Chem. Minerals, 15, pp. 509-513; Forder, S.D., Bland, P.A., Galazka-Friedman, J., Urbanski, M., Gontarz, Z., Milczarek, M., Bakun-Czubarow, N., A Mössbauer study of meteorites – a possible criterion to identify meteorites from the same parent body? (2001) Hyperfine Interact. C., 5, pp. 405-408; Maksimova, A.A., Oshtrakh, M.I., Klencsár, Z., Petrova, E.V., Grokhovsky, V.I., Kuzmann, E., Homonnay, Z., Semionkin, V.A., A comparative study of troilite in bulk ordinary chondrites Farmington L5, Tsarev L5 and Chelyabinsk LL5 using Mössbauer spectroscopy with a high velocity resolution (2014) J. Mol. Struct., 1073, pp. 196-201; Maksimova, A.A., Klencsár, Z., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Kuzmann, E., Homonnay, Z., Semionkin, V.A., Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: an example of Chelyabinsk LL5 meteorite (2016) Hyperfine Interact., 237, p. 33; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G., Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research (2009) J. Radioanal. Nucl. Chem., 281, pp. 63-67; Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G., A high velocity resolution Mössbauer spectrometric system for biomedical research (2010) Bull. Rus. Acad. Sci.: Phys., 74, pp. 416-420; Oshtrakh, M.I., Semionkin, V.A., Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research (2013) Spectrochim. Acta, Part A: Molec. and Biomolec. Spectrosc., 100, pp. 78-87; Morozov, M., Brinkmann, C., Grodzicki, M., Lottermoser, W., Tippelt, G., Amthauer, G., Kroll, H., Octahedral cation partitioning in Mg,Fe2 +–olivine. Mössbauer spectroscopic study of synthetic (Mg0·5Fe2 +0.5)2SiO4 (Fa50) (2005) Hyperfine Interact., 166, pp. 573-578; Pasternak, M.P., Taylor, R.D., Jeanloz, R., Bohlen, S.R., Magnetic ordering transition in Mg0·9Fe0.1SiO3 orthopyroxene (1992) Am. Mineral., 77, pp. 901-903; Xie, Z., Sharp, T.G., De Carli, P.S., Estimating shock pressures based on high-pressure minerals in shock-induced melt veins of L chondrites (2006) Meteorit. Planet. Sci., 41, pp. 1883-1898; Mason, B., Olivine composition in chondrites (1963) Geochim. Cosmochim. Acta, 27, pp. 1011-1023; Kessel, R., Beckett, J.R., Stolper, E.M., The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature (2007) Geochim. Cosmochim. Acta, 71, pp. 1855-1881; Scorzelli, R.B., Application of the Mossbauer effect to the study of meteorites – a review (1991) Hyperfine Interact., 66, pp. 249-258; Baldokhin, Y.V., Tcherdyntsev, V.V., Kaloshkin, S.D., Kochetov, G.A., Pustov, Y.A., Transformations and fine magnetic structure of mechanically alloyed Fe[sbnd]Ni alloys (1999) J. Mag. Mag. Mater., 203, pp. 313-315 |